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ABSTRACT 

This thesis details the engineering, design and 

implementation of a real-time, distributed, application 

emulator system (AE system) . The project had two main goals 

for the tool: emulation of real-time distributed systems, and 

as a programmable resource consumer. The AE system is 

currently being used in the HiPer-D test bed to activate a 

resource leveling tool that monitors several software 

components for real-time response. The AE system is highly 

flexible and can be used in the context of a variety of 

network topologies and system loading options. The results 

presented show that the AE system also emulates distributed 

systems. 
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I.   INTRODUCTION 

This thesis describes the design, implementation, and 

evaluation of a software tool that is capable of emulating 

real-time distributed applications. The tool is formally 

known as the Application Emulator (AE) system, and the 

primary goal of the project is to emulate Real-Time 

Distributed Systems (RTDS). This is achieved by providing 

software that can be easily configured to resemble a 

particular application, chosen from a wide range of real- 

time applications. The AE system is not meant to provide 

the functionality of real-time applications, but rather to 

imitate the resource usage patterns of such applications. 

The AE was developed using an iterative process. Some 

iterations added functionality to the AE and allowed the AE 

system to emulate a wider range of RTDS. Other iterations 

concentrated on generalizing the design, emphasizing the 

concept of software reuse. These iterations tended to 

simplify the design. The final design has a scalable 

architecture that can be configured to emulate RTDS 

containing many components, each perhaps executing on a 



different  system,  and  each  perhaps  having  real-time 

deadlines. 

A.   MOTIVATION 

The research performed for this thesis contributes 

substantially to the Naval Surface Warfare Center's (NSWC) 

High Performance Distributed (HiPer-D) computing project. 

The HiPer-D project is currently developing a prototype, 

next-generation high performance Anti Air Warfare Weapon 

Control System (WCS). The project is focused on determining 

whether Commercial Off The Shelf (COTS) systems can meet the 

real-time, scalability and fault tolerance requirements of 

such applications. If successful, the move to COTS will 

offer several advantages over dedicated systems including: 

• lower software and hardware costs, 

• higher performance (faster computationally) 
computers in terms of processing power, 

• reduced hardware upgrade times, and 

• user familiarity with interfaces and components. 

The move to COTS to support these applications 

represents a major paradigm shift. The currently fielded 

set of WCS applications is supported by special-purpose, 

dedicated hardware  (i.e.,  computers).   The communication 



between components is supported by point-to-point dedicated 

connections. The set of fielded applications comprises a 

large and complex entity. The prototype, currently being 

developed and analyzed in the HiPer-D laboratory at NSWC, 

while also large, does not encompass the entire 

functionality of the fielded application. Adding the full 

functionality to the existing laboratory code would require 

a substantial investment. Therefore, an AE system that can 

be configured to accurately emulate the software components 

that are part of the fielded system but are not part of the 

prototype would aid in analyzing the suitability of COTS for 

these applications at a fraction of the cost. An AE used in 

this context must accurately mimic the loads that would be 

placed on the computing and communication resources by the 

missing components. 

Part of the HiPer-D mission is to determine whether the 

next generation WCS can meet its requirements if implemented 

using COTS components. Furthermore, if the current COTS 

systems do not meet the needs of such applications, the 

HiPer-D project must identify the areas of today's 

technology that fail to provide such support. Finally, when 

such areas are identified, the project may also suggest 

avenues for new COTS technologies that will better meet 

Navy's application requirements. 



This motivation helps explain the basic requirements of 

the AE project. An application observed from an external 

vantage point has a CPU usage pattern (or profile), a 

network usage pattern, and a memory usage pattern, in 

addition to usage patterns for some less obvious resources 

such as file server access. The main goal of this research, 

therefore, is to design and implement software that can be 

easily configured to accurately imitate the resource usage 

patterns of WCS software. Obviously, the algorithms that 

will be used by next-generation WCS may be different from 

those used in today's systems. Therefore, the AE must be 

able to imitate not only the usage pattern of today's WCS 

applications, but tomorrow's as well. 

The algorithms used in WCS applications will likely 

change over time, yet based upon existing WCS applications 

[T3] , it is clear that any algorithm that performs weapon 

control will fall into a class of applications known as 

periodic, real-time applications. The main characteristics 

of this class of applications are that they repeatedly 

receive sensor or pre-processed information, execute one or 

several filtering-type algorithms, and report an answer 

before a deadline. Such applications are both CPU and 

network-intensive. Therefore, the design for this AE 

project has focused on two main areas:  the ability to 



replicate CPU usage patterns and the ability to replicate 

network usage patterns. Additionally, the temporal 

relationship between these two uses must also be replicated. 

As part of this thesis, we discuss how this design may be 

expanded in the future to include replicating usage patterns 

for other resources. 

Using the AE system, together with the components of 

the next-generation WCS that have already been implemented, 

will provide a higher level of confidence concerning 

conclusions about the ability of COTS to support the next- 

generation WCS. Without the AE system, or alternatively the 

costly implementation of the rest of the functionality of 

the application, the adequacy, strengths, and weaknesses of 

the COTS system might be unknown. For these reasons, the AE 

is an important tool for the HiPer-D project. 

B.   AE SYSTEM REQUIREMENTS 

The AE system was designed and built to emulate RTDS. 

As such, it has the following high-level requirements: 

• Its architecture must be both distributed and 
scaleable. 

• It must be written in a language that is portable, 
supports multiple threads. It must be designed to 
reduce life cycle costs. 



• It must be capable of being configured to emulate 
real-time applications that have periodic deadlines. 

• It must be possible to determine whether performance 
requirements, such as deadlines, are met. 

• It must produce similar resource loads when run 
repeatedly with the same parameters.  In particular, 
it must produce repeatable CPU and network usage 
patterns. 

Compliance with the above requirements is discussed below. 

The AE system must be able to mimic applications 

comprised of many components, although the separate 

components may execute on different systems. In other 

words, the AE must consist of components that can be 

replicated, individually configured, and distributed. The 

current requirement is that the AE must be able to mimic the 

operation of an application consisting of at least twenty 

different communicating components, which may be running on 

any number of systems that support the defacto LAN standard, 

TCP/IP. 

The second requirement is that the emulator must 

include a wide range of features. Although many other 

modern languages meet the language requirements of the AE 

project, the decision to develop the AE in Ada95 was largely 

due to a previous Navy requirement that stipulated the 

programming language that must be used for Naval real-time 

applications. 



The third requirement deals with the real-time 

characteristics of the AE project. For the purpose of this 

thesis, we will use the two terms hard real-time and soft 

real-time as they are commonly used in the literature. A 

component with hard real-time deadlines must complete its 

periodic work before the deadline for each period in order 

to satisfy system requirements. Soft real-time applications 

meet their requirements if the statistical mean of the 

sample distribution of response times satisfies the deadline 

constraints [Lui73] . For the purpose of this thesis' s AE, 

hard real-time constraints were interpreted to mean that 

missed deadlines must be reported. In many applications 

with real-time periodic deadlines, the deadline of the 

previous period is also the start of the next time period 

[Hart89]. 

In order to meet the last requirement described above, 

the AE must have a repeatable way to apply a load to the 

network and the CPU, as well as to other resources. The 

networking load requirement requires that the AE must be 

configurable to allow the components to send and receive 

messages to one another in such a way that the dynamic 

message-passing topology can easily be specified. The CPU 

loading specification should ideally be independent of the 

speed and instruction set of the processor. 



C.   ORGANIZATION 

The remainder of this thesis is organized as follows: 

Chapter II contains an overview of related work. Chapter 

III discusses the details of the AE and its components. It 

covers the desired features of the AE, first at a system 

level, and second it includes a detailed discussion of the 

components in an AE unit. Chapter IV provides an analysis 

of the AE system including an overview of the emulation 

steps. The chapter includes a section on the application 

being emulated (EADSIM). The chapter finishes with a 

section on results optioned and an analysis of the AE 

system. Chapter V concludes the thesis by discussing some 

lessons learned while developing the AE, by suggesting 

future work for the AE, and, by contrasting the AE with 

related tools for real-time system emulation. 



II.  RELATED WORK 

This chapter describes several simulation and emulation 

tools that are closely related to the AE system. A 

comparison between the tools discussed here and the AE is 

presented in Chapter V after the reader has had an 

opportunity to read Chapters III and IV and has a clearer 

understanding of the AE system. 

A.   DYNBENCH 

DynBench [WELC98] is a benchmark suite that was 

designed to emulate a portion of the prototype next 

generation Anti-Air Warfare, or, as it is better known, 

HiPer-D [T3] . Therefore, DynBench is a real-time 

distributed system with Quality of Service (QoS) 

requirements. Just like HiPer-D, DynBench is a system that 

allows certain software components of its distributed system 

to be relocated during operation. Relocating a software 

component means moving it from one computer to another 

computer. Relocation of runtime components is a feature 

that requires an outside action (i.e., some other software 

component to act on resource data, and to actually kill and 



restart the DynBench components being moved) and is normally 

in response to problems related to loading or faults1. For 

example, any or all the components that make up a DynBench 

run-time system can be relocated while DynBench is 

operating. 

DynBench maintains Quality of Service (QoS) data and 

provides an Application Programming Interface (API) to allow 

a Resource Management System (RMS) or some other process 

access to the QoS data. This data can be used for 

intelligent run-time adaptation. 

The primary load on a DynBench system (and the tactical 

systems that it emulates) is a function of the number of 

objects, or radar tracks in the radar view. Radar tracks 

have various attributes such as speed, heading, and 

identification, i.e., friend or foe. DynBench provides two 

methods for changing the track load. The first is based on 

time, where the number of tracks in the system is increased 

or decreased as a function of time. The second allows the 

number of tracks to be instantaneously changed by an issuing 

interactive command. 

1 A fault can be a computer system that fails or a network 
segment that also fails and causes a computer system to be 
isolated. 

10 



Other characteristics of radar tracks that DynBench 

must account for include initialization (where they start) 

and heading (where they are going). These characteristics 

are important when studying a tactical system, but are much 

less important if one is using DynBench as a loading tool 

and not as a tactical system. 

The DynBench benchmark suite uses simulated data in its 

messages and processes this data with accepted algorithms. 

In contrast, most real-time benchmarks use a synthetic 

workload2 created by calling existing CPU loading benchmarks 

(e.g., Whetstone) for workloads. This places DynBench 

somewhere between a general-purpose benchmark and an actual 

system. 

B.   CARFF'S EMULATOR 

Paul Carff [CARF99] performed research aimed at 

determining how much data are needed about an application's 

run time resource usage in order to predict how it will 

perform on different platforms (i.e., different processor, 

memory and operating system configurations).  Collecting the 

2 A synthetic workload is a nonreal-world program that 
usually exercises one aspect of a system.  An example is the 
Whetstone benchmark that performs operations on floating 
point numbers. 

11 



right amount of resource information is a difficult problem. 

If not enough information is obtained, then the resulting, 

prediction may be incorrect by more than an acceptable 

percentage. Large amounts of data can put a strain on the 

run-time performance of the system under study and increase 

the problem of managing and processing the data. The 

optimum level of data collection should allow prediction to 

occur within a certain level of accuracy (e.g., plus or 

minus 10%) at some level of consistency (e.g., 90% of the 

time). 

The application Carff utilized was a distributed 

message passing application that allows for a configurable 

number of components. Systems such as MSHN (section II.E) 

are designed to use runtime data similar to that collected 

by Carff to predict resource requirements, and, when 

possible, completion time estimates for applications. MSHN 

was intended to use this information to decide where an 

application should run, while accounting for many factors 

including: 

• the deadline of an application, 

• the current state of the system, and 

• other pending jobs. 

12 



Carf f developed an emulator to validate his thesis. 

His emulator, developed in Java, contains four modules, each 

of which is always executed within its own thread. A brief 

description of each module is given below. 

• Main. This module receives the information needed 
to configure the other three modules. It also must 
wait until the other modules complete before 
exiting. 

• Calculation. This module performs the CPU loading 
by multiplying two 100 x 100 matrices. It instructs 
the sending modules to send messages based on either 
a fixed interval or a statistical distribution on 
the progress made in finishing the multiplication. 

• Sending. Each instance of Carff's emulator has a 
send thread for every other emulator in the test. 
If there are n (e.g., n=5) copies of the emulator 
running then each will have (n-1) copies of the send 
module (e.g., 4). Each module sends messages to 
only one remote emulator. 

• Receive. This module is very similar to the Send 
module. Each emulator will have n-1 copies of the 
receive modules running. Each receive module is 
dedicated to receiving from a single remote sender. 

The emulator runs until all threads have completed 

their work. This work includes reception of all messages 

and, of course, finishing work that emulates CPU loading. 

Only when the calculation, and receive and send threads have 

completed will the main module terminate. 

13 



C.   PETRI NETS 

Petri nets can be used as a tool for the indirect study 

of a system [PETE81] . The first step to utilizing Petri 

nets is to create a model of an existing system by 

incorporating all important features of that system into the 

model. Then, the model, which is mathematical in nature, 

can be analyzed to learn more about the actual system. 

Many different systems can benefit from this indirect 

method of study. There are many cases when the Petri net 

method can work better than studying the actual system. For 

example, astronomy (where the times involved in the actual 

system are too great) and sociology (where studies might 

cause ethical problems) are eminently suitable for studies 

via Petri nets [PETE81]. The DynBench benchmark suite is an 

example of a model representing a system that is not readily 

available for experimentation since the software is 

considered proprietary and sensitive (for national security) 

in nature. The operating signature (resource utilization of 

the COTS components) does not have the same level of 

classification and can be used in the model. 

14 



Well-constructed models are necessary for useful Petri 

nets. If a model is poorly constructed then the resulting 

conclusions can and probably will be incorrect. If a model 

is well constructed and correctly represents the major 

features of the real world system, then the Petri net study 

can yield usable results. The interaction between the 

components (which may be large complex systems themselves) 

must be preserved in the model. Each component of the 

system has a separate behavior as well as an interaction 

with the other components. That behavior may change over 

time and/or events (the current state). 

D.   HARTSTONE BENCHMARK 

Hartstone is a real-time benchmark suite. It was 

initially proposed as a specification [HART89] for a 

benchmark suite, but later was developed into a working 

tool. The premise of the Hartstone benchmark is that 

developers can prototype a proposed real-time system, and 

then execute that prototype on the intended computer 

hardware. This allows the designers to quickly see how the 

actual system will perform within some margin of error when 

fielded.   Before Hartstone, developers would either wait 

15 



until the system was built or would have developed a 

prototype themselves in order to test system response. 

The Hartstone Benchmark provides a series of tests to 

conduct on a real-time system [HART89] . The five tests 

defined by Hartstone [HART8 9] are given below: 

• PH Series: Periodic Tasks, Harmonic Frequencies 

• PN Series: Periodic Tasks, Non-Harmonic Frequencies 

• AH Series: PH Series with Aperiodic Processing Added 

• SH Series: PH Series with Synchronization 

• SA Series: PH Series with Aperiodic Processing and 
Synchronization 

Harmonic frequencies means that all the periodic tasks 

have a common base frequency. The task with the shortest 

time period, operates at the base frequency. All the other 

task's periods are some multiple of the base frequency. For 

example, if a system includes three tasks, and they have the 

following periods: Task One is one second, Task Two is two 

seconds and Task Three is four seconds, then these tasks are 

harmonic with a base frequency of one second (i.e., Task One 

is the task that runs at the base frequency) . When the 

tasks are synchronized and harmonic they all start at the 

same time, so every fourth second all three tasks will start 

an execution cycle. 

16 



A test utilizing the Hartstone benchmark continues 

until the system misses a hard real-time deadline. If, 

during the first run of the system all hard deadlines are 

met, then one part of the system is changed to make meeting 

the deadlines during the next run more difficult. This 

continues until the system fails to meet a hard deadline. 

The Hartstone benchmark is intended to measure the breakdown 

point of a real-time system [HART92]. Hartstone benchmark 

results allow a real-time system designer to know before 

software development if the end product could operate as 

specified in terms of real-time response. 

MSHN 

The Management System for Heterogeneous Networks (MSHN) 

was a research project to develop a Resource Management 

System (RMS) . One goal of a RMS system is to make a set of 

distributed computational resources (heterogeneous in MSHN's 

case) look and act like one virtual machine [HENS99] . 

Distributed Operating Systems are also tools that attempt to 

make a set of networked machines look like one virtual 

system. One major difference between a RMS and a 

distributed operating system is that the RMS does not manage 

system resources.  That task belongs to each local operating 

17 



system. Thus, an RMS provides a mechanism for intelligently- 

assigning applications to a computing system selected from 

set of computing resources. 

One objective of MSHN was to attempt to meet QoS 

requirements by supporting adaptive applications [HENS9 9]. 

Adaptive applications allow for different levels of fidelity 

in the output. For example, directions to a local airport 

can be delivered as a color map, a black and white map, or, 

in the simplest case as an ASCII description. If the 

completion time is critical, then meeting that deadline (in 

this case, perhaps catching a plane) is the primary concern 

and the quality (in terms of display) of the result is 

secondary. The intended MSHN , goal was to meet deadlines 

with the best quality results, but if available resource 

levels would not permit the deadline to be met, then to 

adapt one or more of the applications so that the deadline 

could be realized. 

The adaptable features described for MSHN appear 

promising for future applications. The idea of applications 

that dynamically adapt themselves through tools like MSHN, 

allowing several competing applications to all meet their 

deadlines, would be a major advancement over today's static 

software systems. 

18 



III. APPLICATION EMULATOR SYSTEM AND COMPONENTS 

Chapter III has the following organization. The 

introduction contains a high level overview of the AE 

system. Section B, contains background information and the 

constraints on the AE project. The chapter finishes with a 

section giving the functional block diagram of an AE unit. 

This section also contains a detailed description of the 

components that make up an AE unit. 

A.   INTRODUCTION 

In developing the AE, the primary goal was to keep the 

components of the AE unit fairly generic and flexible. 

Although this may seem to constrain the capability of the AE 

system, it will be shown that the AE system can emulate a 

large Real Time Distributed System (RTDS). Large system 

emulation is possible because each AE unit can mimic most 

real-time components and large systems can be constructed by 

interconnecting them in a wide range of topologies. 

In the HiPer-D program one of the early needs for an 

emulation or simulation tool was to place additional load on 

partial implementations of large real-time systems. In this 

role, the AE system would emulate missing or unfinished 

19 



components that are part of a larger system. Its role would 

be to emulate the missing component's resource usage profile 

and thereby create the illusion of having the component 

present. The resulting system, consisting of actual code 

and the AE system, can then be studied. The ease of 

modifying the AE system usage profile allows a wide range of 

tests to be conducted much like a Monte Carlo simulation. 

In this role, the AE system is utilized as a tool for 

quickly prototyping real-time components. 

The CPU cycles consumed by an AE unit can be divided 

into two areas, overhead and emulation. The overhead CPU 

usage is introduced by the AE as it executes an emulation 

and is a necessary aspect of any emulation package. The AE 

system, at a system and component level was carefully 

designed and coded to minimize CPU processing while 

maintaining a acceptable level of functionality. The CPU 

emulation, which is central to application emulation, is 

accomplished by placing a synthetic workload on a system. 

Each AE unit provides the ability to emulate the 

resource utilization of the following system resources: CPU, 

network and memory. The rest of this chapter will cover the 

detailed requirements and the design of the Application 

Emulator. Further, it will show how the design and 

implementation meet the requirements. 

20 



B.   PROJECT REQUIREMENTS 

The initial goal of the AE project was to provide an 

application  emulator  that  could  mimic  the  resource 

utilization of existing or planned real-time applications. 

A working group from the HiPer-D project formulated the 

following high-level requirements for the AE development 

program: 

■ It must be written in a high-level language such as 
Ada. 

• It must allow configuration via a centralized 
controlling unit. 

• It must include a realistic CPU loading capability. 

• It must support emulation of periodic real-time 
processes with deadlines. 

• It must include emulation for transient periodic 
real-time processes. 

• It must support a complex message passing capability 
that includes performance metrics. 

• It must be written such that it can operate in a 
heterogeneous environment. 

• Each experiment must be repeatable. 

• The metrics provided must be useful for performance 
(i.e., loading) tuning. 

• In general, it must provide the ability to simulate 
processing and communication workloads on multi- 
computer networks. 
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C.   SYSTEM DESIGN 

This section gives the reader an overview of the AE 

system's design, and insight into how that design meets the 

requirements of the AE project. First, we will start by- 

looking at how the AE system operates, and then dissect an 

AE unit, with a detailed description of its components. 

Figure 1 illustrates a prototypical AE system: one or more 

AE units and a User Interface (UI) . The most important 

component of an AE system is the AE unit, which is the 

emulator engine that emulates real-time software 

components.). This diagram is similar to the system used 

for experimentation to be discussed in Chapter IV. 

Each AE unit in Figure 1 can be located on any computer 

and operates independently of the other AE units, so all 

three AE units in Figure 1 could be located on the same 

computer or three different ones. To change the experiment 

and move an AE unit to a different computer only requires 

changing the platform where each AE unit is started. It is 

worth noting that the example in Figure 1 does not account 

for network traffic between the AE units. In a typical 

RTDS, network traffic would be present. 
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Figure 1 AE System 

The rest of this chapter describes how the AE system 

operates. 

1.   User Interface (UI) 

Emulation using the Application Emulator (AE) system 

consists of the objects shown in Figure 1: Command file, 

User Interface (UI) and one or more AE units. The UI is a 

multi-threaded application whose main task is to control the 

execution of a group of AE units operating as a RTDS. The 

command file contains a list of commands that give each AE 

unit its resource usage profile.  The command file drives 
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the emulation by providing the resource usage information 

and, in addition, provides a method for specifying precise 

timing of resource utilization. 

As shown in Figure 1, the UI plays a major role in the 

execution of the AE system. The procedure for starting all 

the AE units and the UI for an experiment is described 

below. After an experiment starts, the UI reads and 

processes the command file. Each command in the command 

file contains a field, which specifies a particular AE unit 

by name. These commands contain the information that 

controls what resource and the amount of each resource each 

AE unit will use. Different command files allow the AE 

system to emulate an entirely different system. 

The UI satisfies several of the high-level requirements 

for the project. It provides the centralized control and, 

by employing the command file, provides for repeatable 

experiments. The UI also allows the AE system to be 

scaleable (easily supporting many AE units in an 

experiment), while also supporting the distributed 

architecture requirement. 

The startup procedure for the AE system can aid in 

understanding how it operates. Each AE unit is known by its 

name, a string of up to 14 characters. Use of names to 

identify and establish connections in the network, allows an 

24 



AE unit to be executed on any computer system on the Local 

Area Network (LAN). Starting the applications manually (the 

UI and the AE units) on several different computers is a 

multi-step process. To save time and reduce mistakes, an 

automated startup tool that greatly simplified the otherwise 

labor-intensive task of startup was borrowed from the 

DynBench project. The startup task involves one UI and one 

or more AE units. 

There are two initialization (i.e., command line) 

parameters of interest for the UI. The first specifies the 

mode of operation: interactive or batch. The default mode 

of operation is batch in which commands are processed from a 

file, but for testing and flexibility, an interactive mode 

is available. The interactive mode includes a tool that can 

help a user to construct the lengthy AE commands. The 

second is an optional parameter that specifies the number of 

AE units that will be part of the experiment. This 

parameter instructs the UI to wait until that number of AE 

units has connected to the UI (via TCP/IP) before processing 

commands. After the last AE unit creates a connection with 

the UI, it starts processing the command file. The UI also 

records the start time, which is used for Quality of Service 

(QoS) data and for commands that require timing (described 

below). 
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There are four types of commands and all of them 

support an optional time field parameter. This option is 

available in both modes of operation (interactive and batch) 

but would be difficult to use effectively in interactive 

mode, since interactively constructed AE commands are likely 

to execute late. Part of the process of parsing commands 

includes checking for the time parameter. If the time field 

is present, then the UI must determine if the command is to 

be executed immediately or later. This calculation is made 

by comparing the elapsed time and the command's time field 

parameter. Elapsed time is defined as the current time 

minus the start time. If the current command needs to wait, 

then the UI suspends execution until the time field and the 

elapsed time are the same; at this point it sends the 

command to the intended AE unit. Because the command file 

is processed from top to bottom, all commands that follow 

one with the time parameter specified must also wait until 

it is processed. 

An AE unit supports several command line parameters, 

but, for normal operation, only two are significant. The 

first one specifies the AE unit's name. The second one is 

the name of the host where the UI is executing. This 

information allows this AE unit to make a network connection 

with the UI.  The mapping of an AE unit name to IP address 
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takes place at run time and as stated above allows AE units 

to be executed on different computers for different 

experiments while using the same command file. The name 

information is stored in the connection table, which is 

described in detail in Section III.C.3,h). The connection 

table is replicated on the UI and at each AE unit. This 

feature allows an AE unit to be easily extended so that it 

can be moved during runtime (this extension is not yet 

implemented). The table includes enough information (i.e., 

AE unit names and IP addresses) so that each AE unit can 

create a network connection with any other operating AE 

unit. 

In summary, the UI plays a major role in the overall 

operation of an experiment. It can be used to synchronize 

the startup process, and, because it records the start time, 

it also allows for the precise timing of individual 

commands. The UI's architecture and implementation allow 

centralized control. Centralized control and the naming 

feature allows the individual AE units to be located 

anywhere. The UI ends an experiment when it encounters the 

"stop all" command. It forwards the command to all the 

participating AE units, informing them to perform a normal 

shutdown. 
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2. AE Commands 

The AE supports four types of commands.  Each command 

in the command file is one of the following types: 

• CPU command, 

• network command, 

• memory command or 

• control. 

The first three command types are used to specify resource 

loading for a particular resource. The command structure 

developed for the AE system is shown in Appendix B and an 

example is included in Appendix A. The control command type 

is used for shutting down the system after an experiment or 

test has completed. 

3. AE Unit 

Figure 2 depicts all of the major internal modules of 

an AE unit and most of the interactions between the modules. 

All the shaded objects represent a process thread. As 

shown, the AE is a multi-threaded, complex application. Its 

components include: message table, connection table, network 

modules (i.e., send receive and a general networking 

module), CPU job table, monitoring, message processing, CPU 
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loaders, benchmarks, controller and the memory loader.  The 

rest of this section describes each AE component. 

Network Connection 
to User Interface 

Figure 2 AE unit Block Diagram 

a)       CPU Loader 

Figure 3 is a diagram showing how a CPU loader 

operates. It is important to note that, for real-time 

processes, the main loop will operate forever (until it is 

stopped) and not a specified number of times. The CPU 

Loader along with the workload module emulates the CPU 

workload of periodic, aperiodic, or transient periodic real- 
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time processes.   Each AE unit has the ability to support 

multiple, concurrent executing CPU loaders. 

Main Loop 

Record time 

Inner Loop 

Call Workload (Probability_function (workload info)) 

Send Message 

End Loop: (1 to Repeat count) 

Sleep until next start time 

End Loop: (1 to Infinity) 

Figure 3 CPU Loader Functional Diagram 

The CPU loader module has several features that 

need explanation. The call to the workload module causes 

CPU emulation to be performed. The item labeled "action" 

drives the network emulation capability. The term "action" 

and how it applies to network emulation is described below. 
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The last feature is the repeat count; this feature allows 

each instance of a CPU loader module to have specified both 

a period and a repeat count. For example, if a CPU loader 

was defined with a period of two seconds, a repeat count of 

four and an action to send a message. It would operate as 

follows, the main loop would start every two seconds. The 

inner loop would iterate four times for each main loop 

execution. Each time the inner loop executes it would call 

the workload module and, because an action is defined, it 

would also send a network message. Therefore, every two 

seconds the loader would call the workload module four times 

while also sending four messages. The sequence described 

above is also shown in the timing diagram shown in Figure 4. 

The term action as it is used in this thesis, is defined as, 

"linking CPU processing to the loading of other resources", 

such as sending a message after completing a defined 

workload. In the general case, real-time components 

complete the same task repeatedly in a periodic (e.g., every 

second) nature. The repeat parameter allows a periodic CPU 

Loader's period to be divided into segments so that an 

action can occur several times in a single period (as 

diagramed in Figure 3) . The parameters listed below are 

configurable at CPU loader initialization time: 
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• real-time period (in milliseconds), 

• benchmark (Whetstone or Dhrystone), 

• workload data: average, and distribution parameters 
(e.g.,  distribution parameters  can  be  mean  and 
variance), 

• action  and action probability  (for  example  the 
action is taken  60% of the time), and 

• repeat value (allows actions to occur several times 
in a single period). 

Each CPU loader task maintains the following 

Quality of Service (QoS) data: 

• deadlines: missed and met, and 

• message end-to-end timing information. 

The CPU loader modules can operate in either a 

periodic or an aperiodic manner. Figure 4 illustrates a 

loader module as seen by someone tracing its execution 

through a single period. 
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Figure 4 CPU Loader Time Diagram 

Figure 4 shows a periodic CPU loader operating 

with a repeat value of four and an action to send a message 

(note, that in this example the probability to transmit a 

message is 100%). Remember that real-time applications 

operate in a periodic fashion, wake up, process, sleep, wake 

up, process sleep, etc. Here, periodic means that the start 

times are uniformly spaced in time. The above diagram is a 

snapshot of such a process, and moving ahead, or back in 

time will produce a similar diagram with evenly spaced start 

times. The diagram shows the loader first simulating CPU 

usage followed by the transmission of a message (through an 

action) .  The above sequence is executed four times in the 
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diagram, at which time the loader has finished its CPU and 

network emulation for the execution cycle. It will then 

suspend execution until the next cycle is due to start. 

When a CPU Loader starts a new execution cycle, it 

first calculates the CPU workload using the average and 

statistical distribution data. The data used in the 

calculation are contained in the AE command that describes 

the CPU loader. Workloads can be described as normal, 

uniform or exponential statistical distributions. Next, a 

time stamp is recorded to allow for QoS measurements. The 

workload information is then sent to the benchmark module to 

emulate CPU loading. As an example, this module might call 

the Whetstone Benchmark to simulate CPU loading, or workload 

as it is referenced in this thesis. Each action has an 

associated probability (0% to 100%) that is checked before 

the action is executed. So, if an action is defined and if 

the probability test passes, a call to the "network send" 

(sending a message is the only implemented action) module is 

made with the information needed to construct the size and 

type message being sent. If a repeat value is set, then the 

process described above is repeated for the specified number 

of times. Finally, the next start time is calculated. If 

the next scheduled start time has passed, then a deadline 

was missed.  The loader records the event (deadline missed), 

34 



and starts the next iteration. If the deadline was met, the 

loader will issue a sleep command to consume the remaining 

time. 

b)       Workload Module 

The main function of the workload module is to 

emulate an application's CPU resource utilization. To 

accomplish this task the AE uses a list of commonly 

available benchmark programs, which provide a synthetic 

workload. The list of benchmarks supported includes a small 

Whetstone [CURN76] and a Dhrystone [DHRY84] benchmark. 

These two benchmarks were selected because they represent 

computationally intensive workloads and the class of 

software being emulated (real-time distributed) normally can 

be characterized as having the same characteristics. For 

completeness and flexibility, the design and implementation 

of the AE allows additional benchmarks to be easily added to 

the existing set. 
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c)       Networking 

The AE system has been developed to emulate 

existing and/or planned RTDS. In that environment, some 

applications only process messages; their workload is a 

function of the number and type of messages that they 

receive. A message received by an AE unit can contain 

workload information. Details of message content and how 

messages are processed by an AE unit are fully explained in 

a subsequent section (Message Processing III.C.3.J). 

d)       AE Messages   (Network Loading) 

An AE message consists of several data fields, 

name fields (i.e., AE names), and QoS fields which contain 

timing information. The name fields contain the originator 

and all the receivers of that message. The names define the 

arcs that a message takes through an AE topology and 

determine what communication connections are required to 

support that message. Four different message path types are 

supported by the AE project: simple, fan out, pipeline and 

circular pipeline.   They are illustrated in Figure 5 and 
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were selected because they encompass most of the 

communication functionality found in modern large real-time 

distributed systems today. The more complicated message 

types (pipeline, fan out and circular pipeline) can have up 

to five receivers. Five was selected because it was large 

enough to allow the AE to emulate the most complex message 

passing used in the HiPer-D prototype. A larger number was 

not selected because each message transmitted between AE 

units carries the entire data structure required to support 

all the features of the networking subsystem. The overhead 

of supporting up to five receivers, adds 3 00 bytes to each 

message. A larger number would have increased the overhead 

-of the AE. 

All commands (from the command file) are processed 

through the UI and then passed to an AE unit as described in 

the UI Section III.C.I. Message commands require an 

additional parsing step by the UI to decode the message type 

and to extract all sender and receiver information. The 

sender and receiver information is then sent to the affected 

AE units to inform them of the required network connections. 

The following parameters are set when defining a message 

(when creating an AE network command): 

• message type: simple, fan out, pipeline or circular 
pipeline 
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• message information: size and message size 
statistical distribution parameters (e.g., size mean 
and variance) 

• protocol (UDP, TCP) and port number 

• the number of receivers and their names 

• unique workload information for each receiver of 
this message including which benchmark to use for 
CPU emulation. 

Sinple: A B 

Fan out: 

Pipeline: A t B b C t D w V w 

Circular 
Pipeline: 

A 

t 
b B t C ^ D w V V 

Figure 5 Message Paths Supported 
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e)       Memory 

The memory emulation capability provided by the 

memory module uses a rudimentary approach. The minimum 

memory consumed by an AE unit is approximately one megabyte 

of memory. Memory usage is emulated by allowing an AE unit 

to expand its total memory usage. There are two commands 

for memory emulation: one that adds to the current size of 

an AE emulator and an other that decreases the emulator's 

size (this command must be preceded by a command that 

increases the size). Reduction in memory size cannot go 

below the actual size needed for the AE unit itself. For 

example, if a particular AE unit was emulating an 

application that has a run-time size of 3.5 megabytes, then 

the AE would need to add 2.5 megabytes to its memory 

allocation to use the same amount of memory. The AE 

emulates the application memory footprint and not its memory 

access. 

Memory is merely allocated is not used or accessed 

in any manner by an AE unit. Normally applications allocate 

memory for a reason, and they normally use that memory for 

code or data. 
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f)       Message  Table 

AE units store network messages in the message 

table (see Figure 2) . When the UI processes a network 

message, the UI sends a copy of that message to the message 

originator (i.e., the AE unit that will initiate the sending 

of that message) . Remember that an AE system can, in 

theory, support a very large number of messages, and the 

discussion below describes a single message. All messages 

are static in that they always start from the same AE unit 

and traverse the same ordered set of AE units. The 

originating AE unit receives a copy of the message from the 

UI via the controller as shown in Figure 2. That AE unit 

then inserts that message into its message table. The 

actual transmission of the message requires the send module 

(see Figure 2) to obtain a copy of the message from the 

message table. 

Figure 6 shows the data structure common to all AE 

messages. At the top of the diagram are the fields that 

define the number of receivers and the type of the message 

(see Figure 5 for a full list of types) . This is followed 

by the workload data structure. The workload data structure 

contains the topology information (contained in the AE Name 

field) and the workload information for each receiver of the 
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message. The Action data structure at the bottom of Figure 

6 is optional. That field defines an action (where "no 

action" is a valid option) and the probability associated 

with actually executing the action. 

Workload data 
structure 

Number of receivers (1 to 5) 

Defines the number of 

AE Name (receiver's name) 
workload data structures 
needed.     ^ 

Workload Distribution 

Workload data structure, five of 
these exist in every message, 
only the needed ones are filled in. 

Workload value 1   (i.e. mean) 

Workload value 2   (i.e.variance) 

Benchmark (i.e. Whetstone) 

Action data 
structure 

Action Flag 

Action data structure, one of 
these data structure exist in every 
message. 

Action choice (i.e. start CPU Loader) 

Action value 1 (i.e. job id) 
<  

Action value 2 (i.e. % Probability) 

Figure 6 AE Message Fields 

g)       CPU Job Table 

Periodic and aperiodic tasks are emulated using 

CPU loader jobs. CPU commands take the same path as network 

commands, proceeding from the command file, through the UI 
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to the appropriate AE unit. Most CPU commands become CPU 

loader jobs when they are received, but some are started 

and/or stopped by events (i.e., transient periodic 

processes). The job table is where event processing obtains 

the parameters to configure and start a CPU Loader process. 

h)       Connection Table 

Each AE unit maintains its list of active network 

connections with other AE units in the connection table. 

New connections between AE units are created only when 

required by a network message command. For example, if a 

new message is defined that goes from the AE unit named "A" 

to "B", then "A" and "B" consult their connection table 

looking for an existing connection using the same protocol. 

The supported protocols are TCP and UDP. If one exists, 

then no action is required. If, on the other hand, a 

connection does not exist, then a new one is created and 

information about the AE name, IP address and the network 

channel number is inserted in both parties' tables. 

The circular pipeline message passing construct 

(Figure 5) was added late in the development process of the 

AE system.   The existing networking code for the project 
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contained a few weaknesses and a bug surfaced when the 

circular pipeline construct was added. To explain the 

problems requires a basic knowledge of how a TCP connection 

is created.  This will be outlined below. 

TCP is a connection-oriented protocol. For two AE 

units to establish a TCP connection, one side (the server 

side) must create a socket and then "listen" on that socket 

for connections. Meanwhile the other AE unit (the client 

side) must also create a socket and then through that socket 

it attempts to connect to the server side (using IP address 

and port number). Timing is a critical aspect in the above 

sequence of events. For example, if the client attempts a 

connection before the server is ready and listening, then 

the client's connection attempt will fail. On the server 

side, the listener will wait indefinitely for a connection 

unless special socket options are used to cause a listener 

to time out. 

The earlier code for the AE project attempted to 

deal with the problems listed above by using less than ideal 

solutions. The old technique used, described below, gave 

the server side of a network connection a small time 

advantage over the client side. The time advantage was 

provided by the UI's action of sending server side 

connection requests to the AE units before the corresponding 
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client side connection requests. For each arc in a 

message's voyage (see Figure 5), the UI would send two 

connection requests commands,  one for the receive side 

(server side) and one for the sending side (client side). 

For example, a circular pipeline message with three AE units 

(i.e., A -> B -> C and back to A) would produce six 

connection request messages from the UI: three send and 

three receive. Each AE unit for the circular pipeline case 

just described would receive two connection requests: a send 

and a receive request. This usually worked by allowing the 

server side "some" extra time to establish its socket before 

the client side attempted to complete the connection. The 

advantage of starting earlier usually solved the timing 

problem, but because it did not eliminate the timing issue, 

the code occasionally failed. 

The circular pipeline was added, because, without 

it the AE system did not easily support two way 

communications. The most common form of communication is 

two applications communicating. For example, "A" sends a 

message to "B", "B" processes the data and sends a response 

back to "A" . The circular pipeline made this (and more 

complicated communication topologies where the originator 

receives a response back) much easier to construct. 
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The addition of the circular pipeline message- 

passing construct caused a deadlock when using the older 

network code. Each AE unit processes network connection 

commands serially, and because the UI made sure server side 

connections were processed first, all AE units involved in a 

circular pipeline message were acting as servers waiting for 

a client connection. However, the same set of AE units 

waiting for a client side connection were the ones that 

needed to also act as clients. The result was a deadlock 

situation. 

Consider the following example. If "A" and "B" 

are involved in a circular pipeline connection they will 

both receive two connection requests, a server side with the 

other AE unit and a client side with the other AE unit. 

They first execute a blocking call to listen for a 

connection (server side) and then wait. If the listen 

finished, they would next execute the client side of the 

connection but because neither is acting as a client and the 

server side will wait indefinitely. The result is a 

deadlock. 

After this problem was discovered, the entire 

networking code was reevaluated. The changes included: 

multiple retries on client side connections (including 

progressively longer times between retries),  server side 
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timeouts (if a client never connects, the server side will 

give up) and multiple threads to process connection 

requests. The use of multiple threads allows an AE unit to 

service client and server side connection requests 

simultaneously. This fixed the deadlock situation. These 

changes fixed all the known problems with the networking 

code. 

i)       Network,   Send and Receive 

This section describes the three modules that 

allow network communication between AE units. The three 

modules are grouped together because of their interactions 

and common functionality, but they are distinct software 

modules. The network module was written in Ada95 (as was 

the rest of the AE system) but the send and receive modules 

were written in the C programming language because of its 

flexibility and system interfaces. 

The network module controls the networking 

functionality for the AE. Its main functions include: 

processing of new connection requests, checking for new 

messages, preparing messages for transmission, and recording 
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data metrics on messages.  Each of these areas is discussed 

below. 

The processing of new connection request allows 

the transmission of messages between AE units. When an AE 

unit is initialized, it first creates a TCP/IP connection 

with the UI. The UI reads the command file, and when it 

processes network commands, it sends connection requests to 

the appropriate AE units. The networking module acts on 

these requests and creates the necessary networking 

connections between other AE units. When an AE unit has 

active network connections, it periodically polls those 

connections to check for the arrival of messages. The 

networking module maintains a list of active connections and 

periodically calls the receive module (described below) to 

check for messages. If a message is received, the network 

module performs the following actions: 

• insert  a  time  stamp  into  the  message  (time 
received) 

• increment  a  counter  recording  the  number  of 
messages received 

• add the byte count of the current message to the 
total byte count for the protocol (i.e., TCP) 

The send module receives its input from the 

network module (described above). Its job is to package the 

three components of a message into a buffer, and pass the 
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message to the Operating System (OS) for transmission. 

Figure 7 diagrams the three parts of a message. The amount 

of padding is the total size of the message minus the other 

two parts: header and AE network command data structure (the 

data structure is diagramed in Figure 6). 

Total Buffer 
size 

V 

16 Byte Header 

AE Command 
~ 290 Bytes 

Message padding 
variable length 

Typical 
Message 

Figure 7 Message Layout 

One of the problems associated with a wide range 

of message sizes is maintaining buffers.  Message lengths 
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are dynamic, and it is possible that the next message will 

be larger than the current buffer. The send routine 

maintains separate buffers for sending UDP and TCP messages. 

The first step in building a message for transmission is 

testing the message buffer's size against the input 

parameter that defines the current message's length. If the 

current message buffer is not large enough to hold the 

current message, then a new buffer is allocated and the 

existing one is released. To minimize memory allocation/de- 

allocation, (generally considered a problem due to memory 

fragmentation recovery processes that can cause real-time 

systems to miss deadlines in a real-time) system, the 

following technique is employed. The new buffer is five 

kilobytes larger than the current message. The value of 

five kilobytes was arbitrarily chosen. Although the 

increase in size is much larger than needed for the current 

message, the overhead and impact of memory allocation is 

minimized. 

A message, as diagramed in Figure 7, is 

constructed from the top down. First the header, a sixteen- 

byte field is built and copied into the buffer. The message 

header is described in detail below in the receive module 

section. Next, the instructional part of the message is 

copied into the buffer (this is the information that comes 
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from the AE command via the command file) . The message 

padding is not formally placed into the buffer. Because the 

system call to send a message requires a pointer to a buffer 

and the message's length in bytes, the padding is safely 

included in the message by ensuring the buffer is larger 

than the message size. 

The last module covered in this section is the 

receive module. It is the receive module's job to undo what 

the send module built up and then to return the AE command 

data structure to the message processing module (covered in 

section III.C.3.j). 

There are differences between the communication 

protocols TCP and UDP that require the receive module to 

treat these protocols separately. TCP messages are received 

as part of a flow of information that spans messages. UDP 

messages, on the other hand are received individually with 

no overarching organization imposed upon a series of 

messages. In between the sender and the receiver, the 

network components may break up a UDP packet into separate 

IP packets but the receiving side's OS will deliver the same 

size message to the receiver. 

To receive UDP messages, the receive module calls 

the recvfrom system call. One of the parameters to the 

recvfrom system call is the number of bytes to read.   If 
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that number of bytes is less than the entire message, then 

part of the message will be lost. For example, if we 

receive a 500-byte UDP message and only read the first 100 

bytes, then the last 400 bytes are lost and cannot be read 

later. This feature actually helps the AE receive messages 

because the number of bytes that must be read is known 

(header and AE command data structure) and the remaining 

bytes can be safely dropped. 

When receiving TCP messages, the receive module 

needs to maintain message boundaries. Here, the main 

problem is that a receiver does not know the length of a 

message before receiving it, and, unlike UDP, all the bytes 

of a message must be read before the module can process 

future messages. The header, introduced above solves the 

problem by providing the message size to the receive module. 

A message header contains the following information: 

• message size in bytes, 

• message type and 

• endian field (described below). 

The receive module will first issue a read to 

obtain the header information, it can then calculate how 

many additional bytes of information must be read to fully 

receive that message.  Next, it will read the instructional 
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part of the message into a data structure that will be 

returned to the calling procedure. The final step is to 

read the remaining bytes of the message. These bytes are 

formally known as the message padding, and they are read and 

discarded. 

The network receive module uses a unique and fair 

method for processing messages over multiple active network 

channels. The fairest way to process messages would be as 

they were received. Unfortunately most operating systems do 

not instruct an application that has more than one pending 

message any timing information on those messages. Fair 

means that if the last message received was from Connection 

Channel Three, and now the AE unit has two messages ready 

for processing (one on Channel Three and one on Channel 

Five), then we will process the message from Channel Five. 

The implementation uses an integer to remember the last 

active channel. When more than one channel has a message 

ready for processing, the AE uses a modular counter to 

select the next message for processing. that is, the AE 

unit will choose the channel numerically higher than the 

last one selected (the selection will wrap around to zero if 

the last one selected is numerically the highest in the 

set). It is the author's observation that most 

communication software, using the select   system call will 
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favor lower number (over higher) channels when two or more 

messages are ready for processing simultaneously. The 

technique developed for the AE appears to be unique. 

To summarize, the network modules take care of 

many issues related with communication over networks and 

allow the AE system to emulate complex message passing 

applications. The sending modules build up the messages for 

transmission. The receiving module processes the header 

information to 1) deal with endian3 issues, 2) identify the 

message and, 3) by using the size information, safely 

receive any size message. After a message is received, it 

is returned to Message Processing  for further processing. 

3 Endian refers to one of the many data compatibility issues 
that can occur when computer systems from different 
manufacturers or operating systems communicate over a 
network.  The endian problem stems from the fact that some 
data types are stored differently on different computers. 
Big endian systems store the most significant part of the 
number of some data types first (lower address value) and 
little endian systems store the values in a reversed manner 
[STEV98].  The endian field (borrowed from HiPer-D) provides 
a nice method for a receiver to quickly determine if the 
message received needs an endian conversion.  The field 
contains a value that when tested informs the receiver if 
the message requires an endian conversion or is fine as 
received. 
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j)       Message Processing 

The input to this module is the output from 

Network receive component (section III.C.3.i). The receive 

module returns known data types (i.e., AE network commands) 

and places them on a circular queue. The message-processing 

thread is event-driven and if no messages are available for 

processing it stays in a blocked state (to reduce CPU 

usage) . If the queue is empty then the message-processing 

module remains blocked. The event of adding an item to the 

queue unblocks the message processing thread. This feature 

is implemented using ADA95 protected objects. Protected 

objects operate provide mutual exclusion. The rest of this 

section contains a description of how messages are processed 

by AE units. 

The design decision to separate message reception 

from message processing allows the receiving thread to 

efficiently receive pending messages. The processing of 

messages can be time consuming, and is therefore handled by 

a separate thread. The following steps outline what each AE 

unit does to process a message: 

• compute and complete CPU workload, 
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• forward the message if necessary, and 

• execute an event if necessary. 

Each message contains workload information for 

each receiver (workloads are uniquely defined for each 

receiver of a message). The pipeline, circular pipeline and 

fan-out (Figure 5) message constructs are examples of 

messages that can have several receivers. Workload 

information is defined with the same parameters as the CPU 

loader, and therefore it is described as a statistical 

distribution. The workload emulation uses the same 

benchmark module as the CPU loader module. The workload is 

used to simulate the work involved in message reception and 

processing. Next, the message is checked to determine if it 

should be forwarded. A pipeline message (Figure 5) is an 

example of a message that some AE units (B and C) would need 

to process and then forward. If this AE unit is the last 

receiver of a message, then an optional event can be 

included.  Events can be: 

• start a CPU loader job, 

• stop a CPU loader job, or 

• send a new message. 
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All events have an associated probability. This 

gives the AE system the ability to dynamically alter its own 

behavior and fulfills the requirement of supporting 

transient periodic processes. 

k)       Controller 

The Controller provides the interfaces between the 

UI and the internal modules of an AE unit. Its major 

function is to receive commands from the UI, process those 

commands and then issue the commands to an appropriate 

module within the AE unit. Further, the controller reports 

new information to the UI. There are four types of commands 

that the controller has to process: CPU, memory, message, 

and shutdown. Once a command is identified (e.g., a CPU 

command) it is sent to the appropriate module for 

processing. A CPU loader command, for example, will create 

a new CPU loader process. Because all timing issues related 

to commands are handled by the UI, the controller merely 

processes commands when they are received. 
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D.   SUMMARY 

This chapter has described the AE system. It started 

with a high level view of the AE system as it would be used 

as an emulation tool (Figure 1 AE System). Next that system 

was examined at a component (i.e., AE unit, see Figure 2) 

and at a sub-component level. At the sub-component level, 

many of the details about the AE unit were explained. In 

addition, some of the problems encountered while developing 

the AE system were also discussed. 

The next chapter will present results from a series of 

emulation experiments using the AE system. A tactical 

modeling tool was used as the target application for the 

emulation. The results show that software emulation using 

the AE system can be effective. 
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IV.  SYSTEM EMULATION AND EXPERIMENTATION RESULTS 

A.   INTRODUCTION 

This chapter describes how the AE system can be used to 

emulate an existing software system. The emulation process 

has three major steps. For demonstration purposes, an 

example that emulates a system from Teledyne Brown called 

EADSIM [EADOO], is used. Before the steps are described, an 

overview of EADSIM is presented. The final section of this 

chapter describes the work required to validate the AE 

system's accuracy in emulating a real system. 

B.   EADSIM 

• Extend Air Defense Simulation (EADSIM) is a warfare 

modeling program. EADSIM is widely used to model battle 

scenarios as an aid in making tactical decisions. It 

consists of four modules: C3I, Detection, Propagation and 

Flight Processing. These modules operate in a distributed 

fashion and thus use networking protocols to communicate. 

One  of  the  four  modules  is  optional  (i.e., 

Propagation)  and was not included in Porter's  [PORT99] 
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thesis results, which are used as input to the AE's 

emulation process. EADSIM supports a wide range of tactical 

systems that can be included in a model. Battle scenarios 

are constructed through a complex iterative process 

[PORT99]. 

For the purpose of this thesis, the configuration of, 

and results from, EADSIM are interesting but not necessary. 

Remember that the AE system does not return useful results, 

but rather loads the system as if a useful application was 

running. The block diagram of EADSIM (Figure 8) shows the 

communication paths between the three distributed modules of 

EADSIM. The resource usage results from Porter's execution 

of EADSIM are presented at the end of the chapter, followed 

by the results of the AE systems' emulation experiment using 

EADSIM. 
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Figure 8 EADSIM Runtime Block Diagram 

C.   SYSTEM EMULATION: THE THREE STEP PROCESS 

Starting with a system like EADSIM, and automating the 

steps to emulate it using the AE has always been a desired 

feature of the AE project. Figure 9 below, shows the three- 

step process for creating an emulation from an existing 

system using the AE system. For reasons listed below, the 

goal of automating this process was not realized. A problem 

was the tools (or lack of tools) needed to profile an 

application's components to produce the information required 

to construct the AE command file.  Also, as will be shown, a 
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general understanding of the system under study is required 

and cannot be obtained from the profiling tools. 

Operating System 

C> Wrapper 
Data, 

Resource 
Profile 

STEPS 
1. Resource Data 
2. Conversion 
3. Emulation Execution 
4. Emulation Comparison 

> 

AE 
Commands 

and 
Information 

Target 
Usage 
Numbers 

y 

:> System 
Emulation 

Figure 9 Emulation Steps 

Figure 9 diagrams the steps involved to use the AE 

system for emulating an existing system. The fourth step, 

not addressed in this paper is a response loop, which allows 

the emulation process to be tuned. The steps shown in 

Figure 9 will be described for emulating the EADSIM 

application by the AE system. 
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1.   Step One: Gather Resource Usage Data 

The objective of this step is to gather data on the use 

of system resources by the application. As shown in Figure 

9 the wrapper tool was used for component profiling; this 

profiling tool was developed by Schnaidt [SCHN98] under the 

MSHN project (MSHN wrappers). The MSHN wrapper tool 

operates between an application and the Operating System 

(OS), by intercepting system calls. Here a MSHN wrapper is 

a low-overhead component that usually only records the 

parameters to a system call. For example, a network send 

calls the OS write function, the MSHN wrapper interrupts the 

write function and records the number of bytes followed by a 

call to the underlying OS write function. All applications 

(on Unix) call the exit function to halt normally. As 

implemented by Schnaidt, the MSHN wrapper for the exit 

function completes its job by obtaining the CPU usage data 

and logging all the resource usage data collected. 

The MSHN wrappers provide network and CPU usage profile 

data.  All the data provided in this chapter on EADSIM was 

compiled by N. Wayne Porter and was obtained from his thesis 

[PORT99] .  These data are then used as input into Step Two, 

outlined below. 
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Step Two: Using Profile Data to Construct AE 
Commands 

Starting with the profile data from the previous step 

and creating AE commands that accurately emulate a system is 

the most difficult step in emulating an existing software 

system. Some of the data provided by the MSHN wrappers can 

be easily converted into AE commands, while other data 

require a conversion step. This section will cover the 

details of converting the MSHN wrapper data into AE 

commands. 

The network data are in a format that maps nicely into 

AE commands. The MSHN wrappers report networking data in 

the following areas: 

• total number of messages sent, 

• total number of messages received, 

• total bytes sent, and 

• total bytes received. 

The conversion from the above format into AE commands 

is fairly easy because both systems use similar units. The 

AE system sends messages through a CPU loader module's 

action. Thus, if an application sends 4 messages per second 

and the CPU loader has a period of 0.5 seconds, then in each 
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period, the application will send two messages. If the 

number of messages varies, then the probability (of 

executing the action) and the repeat value {for the CPU 

Loader) can be modified to obtain the desired message rate. 

The AE message command provides the AE unit with the 

following information: size in bytes, and path information. 

The transmission rate of a message is related to a CPU 

loading parameter. See Section III.e.2 for a more complete 

description. 

The CPU workload information currently provided by the 

MSHN wrappers does not easily convert into a format that can 

be used to construct AE commands. The MSHN wrappers report 

CPU utilization in seconds (e.g., 17.115 CPU seconds) for 

each module. An AE unit, on the other hand, operates in 

terms of Kilo-Whetstones (1000 Whetstone instructions) or 

Kilo-Dhrystones. The mapping between these units, to any 

degree of accuracy, requires executing an AE unit on the 

same computer used to obtain the MSHN wrapper data. 

The method developed to address this uses the AE 

system's percentage capability to output the number of Kilo- 

Whetstones needed to utilize the CPU at 100% for a specified 

time. To specify the CPU usage in that manner requires a 

single command to run a CPU loader module for one iteration 

using 100% of the CPU for the amount of time desired (e.g., 
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usage = 100%, number of iterations = 1, time period = 22.567 

seconds) . The AE unit will then print out its calculation 

for the number of Kilo-Whetstones or Kilo-Dhrystones needed 

to produce the desired result. Remember that these are 

ideal results. If you actually programmed an AE unit to 

execute with those parameters it would execute that many 

Kilo-Whetstones, but it would most likely not finish in the 

time specified. 

The MSHN wrapper provides the number of CPU seconds 

the application used and this figure is used as the number 

of seconds to use 100% of the CPU in order to emulate the 

application's CPU usage. The number of Kilo-Whetstones 

returned by this method becomes the target number of Kilo- 

Whetstones for that module to execute over the entire 

emulation. 

The algorithm used by an AE unit to calculate the 

number of Kilo-Whetstones needed to consume a percentage of 

a CPU is described below. When an AE unit is asked to use a 

percentage of the CPU (e.g., 35%) it first does a test 

designed to use 100% of the CPU for a short period of time 

which produces a usage value that is used for all percentage 

calculations. The test must take into account the following 

assumptions and problems associated with clock granularity. 

• For short time periods one user gets 100% of a CPU. 

66 



• Tests that are short have problems because clock 
granularity can introduce error. 

• Testing several times increases the odds that all 
tests will not be pre-empted and swapped. 

• Longer tests reduce the clock granularity problem 
but increase the preemption problem. 

Time 

Tic 
One 

Test I 

Test II 

Tic 
two 

Tic 
three 

Total Time = 0 

Total Time = 1 

Test III Total Time = 1 

Figure 10 Time Granularity Example 

Figure 10 shows how clock granularity can introduce 

problems (or error) into calculations.  The basic problem 
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stems from the way the system reports time.   In the area 

between Tic One  and Tic Two,   the system will report the same 

value for the current time.  Timed events that operate for 

short periods, relative to the clock granularity, can lead 

to misleading results.  Test I and II are almost the same 

duration but return values that would create different 

assumptions about their performance.  Test III is almost two 

clock tics in length but is reported as being one clock 

tick.  In this example test II is the only one where the 

reported time is close to the actual time. 

For a given CPU (i.e., computer), we wish to calculate 

the number of KW (Kilo-Whetstones) that can be executed in 

one second.  Two of the values, number of KW (20,000), and 

number of times to execute the test (i.e., 7) were selected 

while accounting for the problems listed above.  The test 

recorded the start time, ts, and the time at the end, te. 

xKW      MKW vrtr     MKW ±1  = => xKW = * lsec, 
lsec  (test)sec       (te-ts) 

Where 
xKW:   total Kilo-Whetstones needed to use 100% of 

the CPU for 1 second 
ts-te: elapsed time 
MKW:   number of KW used for the test (2 0,0 00) 

The  timing performance  built  into  the  AE  system 

operates at the millisecond (ms) time interval.  As stated 
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above, an AE unit can be programmed to consume a percentage 

of the CPU (i.e., 1-100%). Therefore, a CPU loading task 

can be programmed to operate with a period of x ms that will 

consume y percentage of the CPU. The formula below 

calculates the number of Kilo-Whetstones that will consume 

the desired percentage of the CPU, for the time interval 

specified. The term xKW from the previous formula provides 

the baseline for this calculation. 

yKW = T*P*xKW , 

Where 
yKW: CPU workload in KW 
T:   time in ms (ex. 10ms is entered as .010) 
P:   percentage (25% is entered as 0.25) 
xKW: The value of KW that will use 100% of the CPU for 

one second 

A short example will illustrate the calculation. If 

xKW is 100 and a user wants a periodic CPU load that uses 

50% of the CPU and operates with period of half a second. 

It is easy to see that the answer should be 25. The formula 

becomes: 0.5 (time) * 0.5 (percent) * 100 (xKW) and will 

yield the correct answer. 

The percentage usage option for the AE was shown to 

operate as designed. The Unix top command was used to 

verify the percentage usage, because it reports an 

application's  CPU  usage  as  a  percentage.    For  the 
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experiment, the CPU load was set to 4 0%, and a time period 

was set to 1 second. The top command, reported the AE CPU 

usage with in 1% of the desired value. The results validate 

that the method and parameters selected produce the desired 

CPU loading. 

As was shown, the conversion from CPU seconds to Kilo- 

Whetstones is possible by programming an AE unit to use 100% 

CPU utilization for the length of time reported by the MSHN 

wrappers for CPU usage. The data for the conversion of 

EADSIM modules from CPU seconds to Kilo-Whetstones is 

contained in Table 1. 

When an application's CPU workload is expressed in 

Kilo-Whetstones, it can be converted into the command 

language that drives the AE system. It should be noted that 

this method is simplified from the normal case. Most 

applications will have several threads, and detailed 

information about each one may be necessary to fully emulate 

the application. The data obtained from the MSHN wrappers 

does not give any details about how many threads were 

operating and the CPU usage of each thread. 

Although the CPU percentage usage is part of the CPU 

emulation capability of the AE system, it was not originally 

included for the following reason. Applications can be 

profiled by percentage CPU usage but what they actually do 
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is complete a task or set of tasks. If an application is 

ported to a different computer system then that same 

application may finish in a shorter time while using a 

smaller percentage of the total CPU capacity. The AE 

system's CPU emulation is centered on the idea that 

applications complete tasks and using a percentage of the 

CPU does not allow the AE to illustrate performance 

variations in different computers and operating systems. 

The AE uses a synthetic workload (Kilo-Whetstones) to 

represent (or emulate) actual workload. 

Another challenge to the conversion of resource data 

into parameters for the AE command language was that the 

MSHN wrappers do not record any real-time information. 

Real-time information must be obtained through an 

understanding of the system under study. 

In conclusion, by using the information provided by the 

MSHN wrappers, and a working knowledge of the system under 

study, it is possible, by using various conversions, to 

build the commands for the emulation (i.e., an AE command 

file). 
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3.   Step Three: Running a System Emulation 

This step involves taking the command file produced in 

the previous step and executing it to emulate the original 

system's resource usage profile. The first step is the 

process of starting and synchronizing all the AE units. 

When all the components (the UI and all the AE units) are 

operational, the UI begins reading and processing the 

command file. 

This section contains some detailed information about 

the startup process that was introduced in Chapter 3. Some 

of the details in this section review that material. 

Each AE unit supports several command line parameters, 

but only two of them play a role in the distributed 

architecture (the others allow an AE unit to operate as a 

standalone CPU loader). The first parameter defines the AE 

unit's name, and the second parameter contains the hostname 

of the system where the UI is operating. The UI also has 

two command line parameters of interest: command-file, which 

contains the commands used to configure the AE units; and an 

integer parameter which informs the UI as to how many AE 

units are participating in the experiment.  The command file 
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contains all the commands that give each AE unit its 

identity (to emulate its part of a RTDS) . The parameter 

informing the UI of the number of AE units allows the 

startup process to take an indeterminate amount of time to 

complete. The UI keeps a running count of AE units and 

waits until they all have an active connection with the UI 

before starting an emulation experiment. 

Figure 11 diagrams the automation for running 

experiments. There are two levels of processing above the 

AE system level. The top level written for this thesis 

starts the automated startup level and, after AE system 

completes, this script will copy the remote data files into 

a file structure defined in the script's configuration file. 

The automated startup script (see Figure 11), borrowed from 

the DynBench project, starts the components (the AE units 

and the UI) and supplies them with their command line 

parameters. Using remote authentication4 for starting 

processes, the Startup script can start processes on any 

computer system on the LAN. The configuration files for the 

two tools are included in Appendix C. Figure 11 contains a 

graphical representation of the tools. 

4 Remote authentication allows user and system pairs to be 
mutually trusted, and, as such, can execute commands without 
presenting a password as might be required in an interactive 
session. [UNIX97]. 
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Figure 11 Automated Emuation Diagram 

Once all the necessary AE units for an experiment have 

connected with the UI, the emulation process begins. All AE 

commands have an optional time parameter, which is based on 

the time that the last AE unit established a connection with 

the UI (i.e., elapsed time). As described earlier, the UI 

processes the command file, and then issues each command to 

the appropriate AE unit. Normally the last command in the 

command file, is the stop_all command, which instructs all 

the AE units to perform a normal shutdown. Before shutting 

down,  each AE unit outputs all its data and debugging 
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information to a data and log file. The data file contains 

the following data relevant to QoS considerations: 

• network usage data 

- number of messages sent and received 

- total number of bytes sent and received 

- timing information on each message 

• CPU usage data 

- total number of Kilo-Dhrystones executed 

- total number of Kilo-Whetstones executed 

• deadline information 

- Each CPU loader module records the number of 
deadlines missed 

The next section compares the information obtained from 

experimental runs of EADSIM (the data from the AE system is 

obtained from the data files) with the target numbers for 

the emulation of EADSIM. 

D.   EADSIM WRAPPER RESULTS 

The data in Table 1 was obtained from Porter's [PORT99] 

thesis. He obtained the data from the MSHN wrappers while 

executing EADSIM as shown in Figure 8. 
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Table 1 EADSIM Resource Usage Data 

EADSIM Resource Usage Data 

C3I FP User Detect 
User CPU time 17.717 17.125 16.316 
System CPU time 3.026 3.196 5.855 
Total CPU time 20.743 20.321 22.171 
Wall time 94.5 77.1 93.3 
Bytes written 1,634,436 1,029,378 2,057,529 
Number of writes 155,957 741 589 

The three data columns in Table 1 are labeled by EADSIM 

modules (see Figure 8) .  As shown in Table 1 the wall time 

(i.e., actual execution time) is much longer than the CPU 

usage time. It is important to note that EADSIM is not a 

real-time application, but is similar to a real-time 

application  in  that  its  operations  are  time  stepped 

[PORT99]. The importance of time makes sense because a 

battle simulator must account for when and where events 

happen. Table 2, contains the conversion from the MSHN 

wrapper CPU data into Kilo-Whetstones. The Kilo-Whetstones 

numbers are the target CPU usage numbers for the three 

components in the emulation. 
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Table 2 CPU Resource Usage Data for EADSIM 

EADSIM CPU Resource Data and AE Conversion CPU Data 

C3I FP Detect 

CPU time 20.743 20.321 22.171 

Kilo-Whetstones 906,096 887,662 968,474 

Table 3, contains the network information from EADSIM. 

Included is a new row that shows the average message size 

transmitted by each component. 

Table 3 Network Usage data from EADSIM 

EASDIM Network Data 

C3I FP Detect 

Number of writes 155,957 741 589 

Total bytes 1,634,463 1,029,378 2,057,529 

Ave. msg. size 10.5 1389.2 3493.3 

As shown in Table 3, the average message size sent from 

C3I was between 10 and 11 bytes. The AE system's minimum 

message size is approximately 300 bytes, due to the overhead 

introduced by the complexity of the AE messaging. The 

result is the AE cannot emulate small messages. A 

compromise to permit emulation of C3l's network traffic was 

to lower the total number of messages while increasing the 
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size of the average message to a value that the AE system 

could support. The resulting emulation reasonably matches 

the number of bytes sent by C3I, but not the number of 

messages sent. 

EADSIM's operation is time stepped. C3I controls the 

execution by issuing commands, which include timing 

information to the other modules (i.e., Detection and FP) . 

When the other modules complete the workload for current 

time step they send information back to C3I, and the process 

repeats until complete. 

Using the AE system to accurately emulate EADSIM will 

require the same master/slave relationship. Because the 

execution of EADSIM is time stepped, the two processes that 

are slaves (Detection and FP) to the master (C3I) will 

receive all their workload via AE messages. The method of 

emulation was intended to simulate actual operation, where 

the three components of EADSIM complete one time step's work 

and then wait for the command to start the next time step. 

The algorithm used to construct the command file for 

emulating EADSIM is described below. The command file used 

for the emulation is included in Appendix B. The wrappers 

provided high-level usage information about the three 

modules of EADSIM. The wrappers did not provide detailed 

information about EADSIM execution characteristics.   For 
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example, it was not possible to tell whether or not the CPU 

usage of FP occurred evenly over the execution time or if 

it had periods of greater usage and other times of much 

lower than average usage. Without detailed usage 

information, the emulation was forced to assume that the CPU 

usage was consistent over the wall clock time of the 

execution of EADSIM (94.5 seconds). EADSIM is driven by the 

C3I process; it provides the timing, through commands to FP 

and Detect. Therefore, the emulation will focus on C3I 

process and use the same architecture to drive the other two 

modules. The easiest way to construct the emulation was to 

treat the relationship between C3I and detect separately 

from the relationship between C3I and FP. Therefore, the 

CPU load for C3I will be divided in to two CPU Loader tasks. 

One CPU Loader task sent messages to FP and the other sent 

messages to Detect. Both messages contained the workload 

information necessary to emulate CPU usage for FP and 

Detect. Other messages that are part of the EASDIM system 

were emulated using events. Table 4, lists emulation target 

values and experimental results. It is important to 

remember that the target numbers are emulation target 

numbers and are not MSHN wrapper results. The target 

numbers were established through the conversion process 

described earlier.    Recall  also  that C3I's number of 
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messages sent was modified to account for a shortcoming in 

the AE system. 

Table 4 Target and Emulation Results 

J. arget  Numbers   fo: c EADSIM  Eir.ulati on 

C3I FP User Detect 
Kilo-Whetstones 906,096 887,662 968,474 

Messages  sent 5,448 741 589 

Messages  received 1,330 2,724 2,724 

Bytes  sent 1,634,463 1,096,533 2,057,529 

Bytes received 3,086,907 817,232 817,232 

3xperimei ital Results  Fron-. AE System 3ir,uiatio--.   { Averages; 

Kilo-Whetstones 925,979 887,365 967,881 

Messages  sent 5,441 781 566 

Messages  received 1,345 2,720 2,720 

Bytes  sent 1,719,738 1,096,533 1,984,406 

Bytes  received 3,059,339 816,082 816,586 

Percentage  Error   (ai Dsolute  value) 

Kilo-Whetstones 2.19% 0.03% 0.06% 

Messages  sent 0.13% 5.40% 3.90% 

Messages  received 1.13% 0.15% 0.15% 

Bytes sent 5.22% 0.00% 3.55% 

Bytes  received 0.89% 0.14% 0.08% 

Figure 12, shows how the three emulation steps, and 

tables, presented in this section fit together. The data in 

Figure 12 is the average values for the resource loading. 

The exception is the target numbers, which are calculated 

from the resource usage data. The emulation experiment 

shows that the AE system can be used to emulate existing 

systems, and that it can produce results that are within a 
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small percentage of the target values. It is important to 

note that all emulations will have some variation from the 

actual resource loading of the system being emulated. For 

this experiment, the amount of variation from the target 

numbers as shown in Table 4 was small. 

The results presented are from a sample size of 103 

emulation runs of EADSIM. Appendix E shows a full 

spreadsheet containing the data collected from the 103 

experimental executions of the AE system emulating EADSIM. 

As can be seen by examining the data in Appendix E, the 

results for most of the metrics are fairly close to the 

average for all runs. The data in Table 4 contains the 

average values for all the metrics recorded. 
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1 Eadsim Applications (Wrappe r Data) 
1 C3I FP User Detect 
iTotal CPU Time 20.743 20.321 22.171 
Wall clock time 94.5 77.1 93.3 
1 Network Bytes written 1,634,463 1,029,378 2,057,529 
s Bytes per write 10.5 1389.2 3493.3 

1 
RT Application 

Wrappers 

Operating System 

=> 

!AE Target Numbers 

Wrapper 
Data, 

Resource 
Profile 

C3I FP User Detect 
CPU 906,096 887,662 968,474 
Messages sent 5,448 741 589 

! Messages Received 1,330 2,724 2,724 
! Bytes sent 1,634,463 1,096,533 2,057,529 
Bytes Received 3,086.907 817,232 817,232 

> 

AE 
Commands 

and 
Information 

=> 

Target 
Usage 
Numbers 

->    4  <- 

System 
Emulation 

1Z 
AE 
Log 
file 

1 
AE Actual Numbers 

C3I FP User Detect 
CPU 925,979 887,365 967,881 
Messages sent 5,441 781 566 
Messages Received 1,345 2,720 2,720 
Bytes sent 1,719,738 1,096,533 1,984,406 
Bytes Received 3,059,339 816,072 816,586 

Figure 12 Experimental Results Diagram (Averages) 

Additionally, the results show that the AE system 

operates as intended. The commands were carefully written 

for this experiment, but if the AE system had not operated 

as intended then the results would have showed a larger 

percentage error for one or more of the recorded metrics. 
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E.   SUMMARY 

This chapter showed how an existing system can be 

profiled by starting with data obtained using the MSHN 

wrappers. Further, we described how that MSHN resource 

usage data can be used as input into a process that can 

build all the necessary configuration files for an emulation 

using the AE system. As was shown, the emulation can then 

be executed and the results obtained from the AE's data 

files can be compared to calculated resource usage values. 

The results obtained showed that the AE system did 

accurately emulate EADSIM resource usage. Adjustments can 

be made to compensate for the AE limitations, for example 

the fact that the smallest size of an AE message was much 

larger than that of the application it was emulating. 
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V.   DISCUSSION AND CONCLUSIONS 

A.   LESSONS LEARNED 

Some potential customers of the AE were not comfortable 

with the Ada programming language selection. Ada is 

perceived to be a government mistake and therefore most 

sites do not have the expertise or compilers to support Ada 

development. The choice to develop the AE in Ada95 was a 

good technical decision but possibly a poor one for 

marketing the AE. 

Much of the AE was developed . using Object-Based 

programming and not full Object Oriented (00) techniques. 

"Object-Based usually refers to objects without inheritance 

and hence without polymorphism" [OBJFAQ]. If the AE project 

was designed and developed using full 00 features then 

future changes could easily produce new and powerful 

capabilities, while leaving the existing functionality 

intact. The current design allows for change but does not 

leave the old functionality intact. A full 00 

implementation would have been a wise decision. 
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B.   FUTURE WORK 

A number of additions to the AE would increase its 

emulation functionality. One improvement would be to 

provide a general mechanism to allow the AE to send and 

receive messages from existing systems. Used in this 

manner, the AE system could obtain its loading from an 

existing system or be used to drive an existing system. 

While this capability exists, it is limited and must 

currently be customized for each type of message. A 

general-purpose method for this type of feature would be of 

great value for a real-time development project. 

The use of multicast could reduce the complexity of the 

UI to AE unit communication. Using multicast for the Ul-to- 

AE communication would eliminate the command line parameter 

to the AE used for finding the UI. This feature would also 

help the implementation of migration of AE units while an AE 

system is operating (one of the features not yet 

implemented). 
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Other future features include different load simulators 

for many of the other resources that applications utilize. 

The following list contains some of the resources that would 

increase the emulation capability of the AE. 

■ File access (local and file server) 

■ Display subsystem 

■ Database 

C.   COMPARISON WITH RELATED WORK 

This section contains the comparison of this thesis and 

other projects that are closely related with the AE system. 

1.   DynBench 

A common goal for the AE and DynBench projects was to 

provide researchers tools with which to emulate the HiPer-D 

system. The approaches taken by the two efforts were vastly 

different. DynBench's approach was to build a simplified 

version of HiPer-D, making it a specialized solution to the 

problem. The AE system on the other hand, is a general- 

purpose real-time application emulator, and because HiPer-D 
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is in the class of systems that the AE can emulate, it too 

can provide an emulation solution. The primary task in 

creating such an emulation would be the construction of the 

command and configuration files. 

The HiPer-D team plans to combine the DynBench and the 

AE system and make the combined system available to other 

researchers. Users will be able to use the AE and DynBench 

either in combination or individually. These two systems 

are complementary. The AE system offers users a wide range 

of configuration options while DynBench offers users a 

specific and well-tuned HiPer-D emulation tool. 

2.   Carff Emulator 

Carff's emulator has many interesting characteristics. 

It is a distributed, portable (developed in Java), message 

passing application emulator. It contains many of the high 

level features found in the AE system, but its code size is 

at least an order of magnitude smaller than that of the AE. 

There are several differences between the two systems. 

The main one is that the AE is a real-time emulator and 

Carff's is a user-level application emulator (applications 

that execute a task and finish) . The message passing 

subsystems are vastly different; the AE supports a complex 
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yet flexible message passing subsystem, while Carff's only 

supports point-to-point messaging. The CPU workload of the 

two systems is similar; both offer a wide range of options 

for providing CPU loading with statistical variation. 

By using the programming language Java that abstracted 

out the details of networking, the Carff emulator enjoyed a 

much shorter development cycle than the AE. In contrast, 

networking is at the heart of the AE project. For the AE, 

networking took the lion's share of the development time and 

introduced most of the difficult problems. 

3.   Petri Nets 

Petri Nets are a tool that allows researchers an 

indirect method for studying systems. The method includes 

building a mathematical model of the system under study. 

This model is then studied in a laboratory setting. This 

indirect method of study is useful when the actual system is 

difficult to study. 

The AE will allow modeling through emulation, and, as 

such, will allow Petri net-type analysis of some systems. 

Using a loose definition, the HiPer-D system is an example 

of. a Petri net system. In this case, it is safer and easier 

to develop and study the system in a lab before fielding it 
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on a ship, where lives and operations will depend on its 

functionality. 

4.   Hartstone 

The Hartstone benchmark [HART89] is a tool that can be 

used to prototype real-time systems and is mainly used for 

studying real-time system performance. There are many 

similarities and differences between the use of the 

Hartstone benchmark system and the AE project. 

Starting with  the  similarities,  both  systems  can 

support: 

■ Prototyping of real-time systems, 

■ Sending and receiving of messages, 

■ Periodic and aperiodic tasks and 

■ Synthetic workloads. 

The differences between the two tools are numerous. The 

Hartstone benchmark is intended to operate as a single 

system that will return a performance metric. The metric is 

either on (the system has met all its real-time deadlines) 

or off (the system missed at least one real-time deadline). 

The AE, on the other hand, was intended to be a tool that 

operates concurrently with other systems.  Its main purpose 
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is to allow experiments to determine the effects of CPU 

loading and network communication on the total system. Many 

of the other differences stem from that difference. For 

example, a Hartstone test will terminate when a deadline is 

missed. The AE simple records the event and keeps on 

executing. The messaging subsystem in the AE reflects the 

recent growth in distributed systems where communication is 

not always point-to-point. It allows for messages that span 

several applications and further records the time it takes 

that message to traverse its path. Another big difference 

between the methods relates to workload, the Hartstone 

benchmark defines workload in terms of percentages while the 

AE uses an actual value (i.e., kilo whetstones) as well as 

percentages. 

The AE implements or is designed to support many of the 

latest developments in real-time software. For example, 

application migration would not be supported by the 

Hartstone benchmark. The Hartstone Benchmark is primarily 

for embedded real-time systems [HART90]. It would be almost 

impossible to meet a deadline if an application were to 

migrate during a period. The new approach is to allow, a 

system experiencing problems to miss some deadlines while a 

controlling application (i.e., a RMS) carries out an effort 
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to return the system to full functionality as quickly as 

possible. 

It would not be difficult to convince someone that a 

system that is critical for an airliner's operation should 

be able to recover from an event such as a PC crash. This 

is an example of a "real-time mission-critical system that 

must respond in a timely manner to conditions in their 

environment" [WELC98]. The recovery process might merely 

require that applications that existed on the crashed system 

be moved to a different computer. Thus, the whole system 

could be restored to full operational status. In this 

scenario, the crash may cause some short term problems, but 

if the remedy is applied before total control of the 

aircraft is lost, then the safe recovery can be achieved. 

The AE is a tool that can support this paradigm and the 

Hartstone benchmark, while an excellent tool, cannot support 

this form of system survivability. 

D.   CONCLUSION 

Members of the HiPer-D development team saw a need to 

develop a real-time application emulator to help them 

evaluate  their  prototype  Real-Time  Distributed  System 
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(RTDS). In order to be useful, the system would need to be 

able to easily emulate a wide range of real-time 

applications. Further, the resource usage of these emulated 

applications would have to be programmable. The existing 

set of tools available for real-time emulation did not meet 

their requirements. 

Starting with a need and a set of requirements, the AE 

project set out to build an emulation application that could 

emulate RTDS. The main resource areas of emulation were CPU 

and network usage. The emulation was designed not only to 

match how much of a resource an application used but also to 

closely match when that resource was utilized. The final 

product, as was demonstrated through the EADSIM example, has 

enough built-in emulation capability and control to emulate 

a wide range of distributed applications accurately. 

In conclusion, AE system is a tool that, in some 

cases, can aid developers of real-time systems. As the 

world becomes more dependent on computers and especially 

real-time computer systems for safe functionality (e.g., 

aircraft) , the need for tools to help design and prototype 

future systems increases. The AE project fits nicely with 

the other existing tools presented in this paper and as such 

has the potential to aid in current and future real-time 

development projects. 
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APPENDIX A: AE COMMAND FILE FOR EADSIM EMULATION 

Below is the command file that was used to Emulate 
EADSIM. The first 10 seconds are used to create the 
communication channels. For example, the ": 0:0:2:0:" means 
that 0 hours, and 0 minutes, and 2 seconds, and 0 ms after 
starting, execute this command. The message definitions are 
all separated by two seconds. While this is not necessary 
in theory; sometimes the AE system will have problems 
processing several network commands at the same time. The 
actual emulation process is started 10 seconds after the 
synchronization occurs. The "all done" and "turn off" occur 
well after the wall clock time for EADSIM (i.e., its CPU 
loaders should have executed the number of iterations 
programmed, recorded their CPU usage, and QoS information 
and exited) . The "turn off" is the command for the UI to 
exit. At that point, the network code will report its QoS 
data. That last step taken is to write and close the data 
files. None of this is shown but is part of the normal 
shutdown process for an AE unit. 

# Simple C3I  :: TO :: FP and Detect 
# 
0:0:2:0:c3i network define_message TCP 16081 300 normal 12 1 simple fp 
326 normal 15 wheat send_a_msg 3 27 
c3i network define_message TCP 16082 300 normal 12 2 simple detect 356 
normal 17 wheat send_a_msg 4 22 
# 
# Simple  FP  :: TO  :: C3I, 
# 
0:0:4:0:fp network define_message TCP 16083 1389 normal 46 3 simple c3i 
0 normal 0 wheat none 
# 
# Simple Detect :: TO :: C3I 
# 
0:0:6:0rdetect network define_message TCP 16084 3494 normal 116 4 simple 
c3i 0 normal 0 wheat none 
# 
0:0:10:0:c3i cpu cpu_cmd a_de 1 true 584 wheat actual 167 normal 7 17 
true send_msg 2 100 160 
0:0:10:200:c3i cpu cpu_cmd a_fp 1 true 584 wheat actual 167 normal 7 17 
true send_msg 1 100 160 
# 
# 
0:0:110:0:all done 
0:0:112:0:turn off 
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APPENDIX B: AE COMMAND STRUCTURE 

Appendix B contains the command structure for the AE 
system.  The diagram below reads from the top to the bottom 
and spans the next few pages.  At each location in a 
command, where the value in that field will cause a branch 
in the command the graph also has a branch and the arcs are 
labeled with the choices for that entry.  Because some of 
the commands are quite long, the diagram is continued on the 
following pages (Network and CPU).  When a valid entry for a 
command has only a few choices, they are placed inside 
parentheses. 

Time Field (optional): (hh:mm:ss:msms) 

AE Name:(1-14 Characters) 

Command Type: (CPU, Network, Memory, AII_done) 

Memory CPU Network 

Cmd: (amount_to_add, amount_to_free) 
amount: (number) 



This diagram is a continuation from the previous page 
and reads from top to bottom.  It shows the rest of the AE 
CPU commands.  Note, the last entry is the loader's duration 
in time periods (i.e., how many time periods).  A loader can 
operate for a fixed number of time periods (e.g., 500) or, 
forever, as would be the case for most real-time process.  A 
value of zero is entered when the loader should run forever. 

(CPIU 

Cmd: (cpu_cmd, endjobs) 

Cpu_cmd Endjobs 

Job ID:(name & #) 
cmd: (Periodic, aperiodic) 
Time period: (number in mili-sec) 
Benchmark: (wheat, dry) 
workload: Actual, %) 

Actual 

/^Load Mean (number) 
Distribution (normal, exp., uniform) 
Variance (number) 
Repeat Factor (number) 
Start Job: (Yes, No) 

VJEvent: (Sendjnessage, None)      J 

Send_Message None 

Msg ID 
Probability of send (1-100) 

Job ID 

Percentage 

Load Type: (Ramp_up, Flat) 

Ramp_up 

Starting % 
Step % 
Step factor 
Ending % 

Duration in 
time periods or forever 
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This diagram shows the AE network command structure. 
Note, the number of receivers is a number from one to five. 
The loop in the center is where the different workload 
values for each receiver of a message is configured.  The 
bottom of the diagram illustrates how events are configured. 
Note that None  is a valid event (i.e., no event). 

Network 

Define Message 
Protocol: (TCP, UDP) 
Port: (number) 
Msg. Size Mean: (number) 
Meg. Size Distribution: (normal, uniform, exp) 
Msg. Size Variance: (number) 
Msg Id: (Number) 
Path type: (Simple, Fan_out, MultiJump) 

Number_pf_receiver 
Loop 1 .. Number_of_receiver 

AE_name (1-14 characters) 
Workload mean: (number) 
Workload Distribution (normal, exp., uniform) 
Workload Variance: (number) 
Benchmark: (wheat, dry) 

End Loop 
Event: (Sendjnsg, Start CPU, Circular, None) 

Send msg 
Start CPU Job 

Job ID 

Probability: (0-100%) 

None 
Circular 

Cmd: (Amount, Probability) 
Value: (Number) 
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APPENDIX C: AUTOMATED EMULATION CONFIGURATION FILES 

The configuration files for the two automated startup 
tools are shown below.  The top diagram contains the 
configuration of the tool that starts the other startup 
tool.  When the AE system finishes this tool will copy the 
data files back to the current computer system. 

The lower diagram is the configuration file for the tool 
that starts the AE system.  It needs: the path name of the 
program (i.e., AE unit and UI),  command line parameters and 
the system name where it should be run. 

Load_sim_batch Example file (Eadsim batch) 

/lir \ 
Eadsimjresults 

name 
c3i alphel 
fp alphe2 
detect alphe3 

cmds 
Eadsim   Eadsim.start 

done 

Start configuration file Example Eadsim. Start (DynBench tool) 

tdrake;/home/usr/tdrake/LS/;ui.solaris2.6.exe file Eadsim.cmd 3;alphe3; 
sleep 3 
# 
tdrake;/home/usr/tdrake/LS/;load_sim.solaris2.6.exe name:c3i ui :alphe3 ;alphe 1; 
tdrake;/home/usr/tdrake/LS/;load_sim.solaris2.6.exename:fp ui:alphe3;alphe2; 
tdrake;/home/usr/tdrake/LS/;load_sim.solaris2.6.exename:detectui:alphe3;alphe3; 
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APPENDIX D: LIST OF ACRONYMS 

AE Application Emulator 
AH Hartstone Benchmark Standalone test 
API Application Programmer Interface 
ASCII American Standard Code for Information Interchange 
C3I Command, Control, Communication & Intelligence 
C The C Programming Language 
C++ C "plus plus" Programming Language 
COTS Commercial Off The Shelf 
CPU Central Processing Unit 
Detect Detection Process (part of EADSIM) 
EADSIM Extended Air Defense Simulator 
FAQ Frequently Asked Question 
FP Flight Processing (part of EADSIM) 
IP Internet Protocol 
LAN Local Area Network 
MSHN Management Systems 
NSWC Naval Surface Warfare Center 
00 Object Oriented 
OS Operating System, 
PC Personal Computer 
PH Hartstone Benchmark Standalone test (one of five defined) 
PN Hartstone Benchmark Standalone test (one of five defined) 
QoS Quality of Service 
RMS Resource Management System 
RTDS Real-Time Distributed System 
SA Hartstone Benchmark Standalone test 
SH Hartstone Benchmark Standalone test 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
UI User Interface 
WCS Weapon Control System 

one of five defined) 
one of five defined) 
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APPENDIX E:  DATA FROM A SERIES OF EADSIM EMULATIONS 

Sample     Time 
Sec. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Work 
Kilo- 

Whetstones 

C3i Data 

Messages Messages      Bytes Bytes 
Sent       Received       Sent Received 

92.96 910,744 5,440 1,363 1,719,865 3,177,358 
92.94 910,559 5,440 1,331 1,720,289 3,131,094 
92.93 911,995 5,440 1,339 1,718,443 3,150,189 
92.93 908,434 5,440 1,314 1,717,910 3,086,010 
92.93 911,405 5,440 1,378 1,718,769 3,221,250 
92.93 909,731 5,440 1,404 1,718,382 3,267,131 
92.93 909,406 5,440 1,385 1,719,194 3,274,533 
92.93 911,627 5,440 1,379 1,719,091 3,240,254 
92.93 912,939 5,440 1,365 1,719,022 3,174,493 
92.93 911,339 5,440 1,380 1,719,926 3,273,636 
92.93 909,341 5,440 1,388 1,718,267 3,155,483 
92.93 910,243 5,440 1,355 1,720,314 3,153,989 
92.93 913,600 5,440 1,397 1,718,317 3,300,024 
92.93 908,716 5,440 1,375 1,718,660 3,185,017 
92.94 910,333 5,440 1,377 1,718,180 3,203,098 
92.93 912,320 5,440 1,341 1,719,018 3,115,931 
92.93 907,315 5,440 1,385 1,717,953 3,287,455 
92.93 908,027 5,440 1,298 1,719,756 3,054,718 
92.93 910,554 5,440 1,377 1,719,910 3,202,327 
92.93 906,189 5,440 1,313 1,719,558 3,033,111 
92.93 907,806 5,440 1,349 1,719,862 3,225,880 
92.93 912,677 5,440 1,375 1,718,270 3,236,355 
92.93 911,514 5,440 1,317 1,721,352 3,037,212 
92.94 909,408 5,440 1,370 1,718,171 3,241,987 
92.93 907,627 5,440 1,357 1,719,634 3,169,059 
92.93 904,127 5,440 1,359 1,719,005 3,187,086 
92.94 907,137 5,440 1,360 1,718,029 3,189,261 
92.93 909,096 5,440 1,347 1,718,775 3,186,036 
92.93 909,624 5,440 1,348 1,716,833 3,110,805 
92.93 910,363 5,440 1,356 1,718,549 3,159,311 
92.92 908,086 5,440 1,306 1,716,356 3,090,926 
92.93 908,660 5,440 1,353 1,718,992 3,191,105 
92.92 912,916 5,440 1,376 1,718,959 3,221,792 
92.93 908,524 5,440 1,404 1,719,739 3,329,034 
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35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

92.94 911,536 5,440 1,391 1,718,975 3,292,900 
92.93 911,266 5,440 1,341 1,719,292 3,181,081 
92.93 907,960 5,440 1,299 1,717,327 3,074,857 
92.93 911,930 5,440 1,359 1,720,580 3,128,674 
92.93 908,068 5,440 1,339 1,718,828 3,102,043 
92.93 907,018 5,440 1,326 1,718,019 3,104,702 
92.93 910,926 5,440 1,375 1,718,266 3,223,316 
92.93 908,199 5,440 1,368 1,719,412 3,108,910 
92.93 908,613 5,440 1,357 1,717,872 3,179,651 
92.93 912,559 5,440 1,359 1,719,178 3,176,295 
92.93 908,074 5,440 1,447 1,720,180 3,378,578 
92.93 907,023 5,440 1,399 1,718,609 3,323,445 
92.93 907,188 5,440 1,377 1,719,547 3,246,892 
92.93 906,722 5,440 1,302 1,718,584 3,067,133 
92.93 909,927 5,440 1,379 1,719,934 3,207,577 
92.93 911,130 5,440 1,375 1,718,935 3,258,271 
92.93 908,042 5,440 1,398 1,720,070 3,261,265 
92.93 910,476 5,440 1,367 1,719,873 3,202,444 
92.93 909,012 5,440 1,314 1,719,417 3,110,609 
92.93 905,559 5,440 1,380 1,719,466 3,185,968 
92.93 912,566 5,440 1,349 1,719,757 3,102,280 
92.93 908,547 5,440 1,325 1,719,433 3,051,015 
92.93 910,164 5,440 1,361 1,718,433 3,174,327 
92.93 909,705 5,440 1,293 1,717,365 3,063,736 
92.93 912,955 5,440 1,364 1,718,581 3,239,674 
92.93 909,801 5,440 1,321 1,720,910 3,126,011 
92.92 907,551 5,440 1,366 1,719,332 .   3,166,106 
92.92 910,440 5,440 1,365 1,720,295 3,177,639 
92.93 909,346 5,440 1,376 1,717,599 3,229,892 
92.93 909,310 5,440 1,306 1,717,819 3,078,273 
92.93 909,300 5,440 1,330 1,717,869 3,194,821 
92.93 912,726 5,440 1,390 1,718,936 3,276,833 
92.93 909,184 5,440 1,350 1,718,542 3,129,802 
92.93 910,463 5,440 1,354 1,717,450 3,233,155 
92.93 909,643 5,440 1,367 1,718,673 3,179,600 
92.93 906,425 5,440 1,379 1,719,138 3,239,515 
92.93 913,111 5,440 1,367 1,718,459 3,235,067 
92.93 908,408 5,440 1,424 1,718,922 3,364,259 
92.93 909,967 5,440 1,402 1,717,778 3,231,122 
92.93 908,718 5,440 1,377 1,720,109 3,269,965 
92.93 908,376 5,440 1,358 1,720,737 3,189,299 
92.92 909,935 5,440 1,336 1,720,902 3,132,721 
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77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 

92.93 909,516 5,440 1,325 1,720,013 3,109,189 
92.93 912,540 5,440 1,374 1,719,753 3,203,944 
92.93 907,754 5,440 1,399 1,719,097 3,359,174 
92.94 908,808 5,440 1,297 1,718,432 2,939,887 
92.93 914,022 5,440 1,411 1,718,216 3,295,320 
92.94 908,065 5,440 1,370 1,719,103 3,137,401 
92.93 908,598 5,440 1,376 1,718,480 3,231,753 
92.93 912,191 5,440 1,365 1,717,798 3,202,152 
92.93 909,791 5,440 1,362 1,720,330 3,181,126 
92.93 907,828 5,440 1,405 1,717,959 3,293,213 
92.93 908,430 5,440 1,378 1,721,030 3,228,356 
92.92 908,417 5,440 1,365 1,720,160 3,197,565 
92.93 912,816 5,440 1,378 1,719,732 3,209,248 
92.93 911,754 5,440 1,387 1,720,489 3,324,458 
92.93 910,501 5,440 1,358 1,719,102 3,166,563 
92.94 912,738 5,440 1,317 1,718,719 3,020,374 
92.92 912,995 5,440 1,421 1,719,267 3,348,046 
92.93 912,602 5,440 1,334 1,718,098 3,120,212 
92.93 912,207 5,440 1,347 1,719,068 3,158,549 
92.93 913,369 5,440 1,336 1,719,704 3,035,597 
92.92 908,862 5,440 1,351 1,719,208 3,207,424 
92.93 909,420 5,440 1,382 1,719,438 3,248,156 
92.93 908,125 5,440 1,362 1,719,106 3,201,921 
92.93 907,483 5,440 1,315 1,717,599 3,059,935 
92.93 905,470 5,440 1,342 1,719,344 3,120,826 
92.93 913,189 5,440 1,394 1,719,186 3,235,963 
92.93 909,965 5,440 1,383 1,718,540 3,249,418 

Average 92.93 909,784 5,440 1,361 1,719,026 3,186,878 
Variance 2.44E-05 4,355,968 0 919 903,875 6,876,350,77 

0 
std dev 0 2087 0 30 951 82924 
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Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Time 

Sec. 

Work 

Kilo- 
Whetstones 

Detect 
Message 

s 
Sent 

Messages 

Received 

Bytes Bytes 

Sent       Received 

0 967,860 609 2,720 2,139,347 816,902 
0 969,114 609 2,720 2,139,052 817,562 
0 968,895 612 2,720 2,149,856 815,847 
0 969,505 597 2,720 2,099,620 816,026 
0 967,881 623 2,720 2,183,841 815,905 
0 969,844 623 2,720 2,191,876 815,234 
0 967,739 643 2,720 2,255,008 816,047 
0 969,035 632 2,720 2,213,479 815,780 
0 967,331 609 2,720 2,133,246 815,642 
0 966,925 643 2,720 2,260,495 816,099 
0 968,147 587 2,720 2,054,101 816,343 
0 968,916 605 2,720 2,125,097 816,584 
0 968,077 641 2,720 2,256,241 815,366 
0 969,994 607 2,720 2,131,274 815,849 
0 969,115 614 2,720 2,152,732 814,559 
0 968,243 598 2,720 2,093,913 815,493 
0 968,357 648 2,720 2,276,068 815,477 
0 969,747 595 2,720 2,089,478 816,510 
0 967,663 616 2,720 2,156,847 816,450 
0 968,647 575 2,720 2,016,793 815,718 
0 968,059 642 2,720 2,253,705 815,961 
0 968,520 631 2,720 2,213,249 815,290 
0 969,410 573 2,720 2,013,320 817,569 
0 969,958 634 2,720 2,231,761 815,298 
0 968,302 609 2,720 2,139,430 815,688 
0 969,657 617 2,720 2,167,783 815,370 
0 967,534 615 2,720 2,162,390 814,377 
0 967,103 624 2,720 2,195,646 817,230 
0 969,325 589 2,720 2,066,123 814,812 
0 968,224 604 2,720 2,123,249 815,364 
0 969,459 605 2,720 2,125,289 814,233 
0 967,721 624 2,720 2,188,345 816,365 
0 968,211 622 2,720 2,184,035 815,886 
0 967,027 653 2,720 2,296,915 816,192 
0 968,491 648 2,720 2,269,414 815,997 
0 967,987 625 2,720 2,196,295 816,609 
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37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

0 968,214 604 2,720 2,118,720 814,783 
0 967,201 592 2,720 2,075,610 816,483 
0 967,267 589 2,720 2,067,811 816,074 
0 969,012 599 2,720 2,103,921 815,514 
0 969,007 623 2,720 2,187,772 816,581 
0 967,660 574 2,720 2,014,336 815,653 
0 969,781 617 2,720 2,162,882 815,397 
0 968,252 613 2,720 2,153,167 816,150 
0 967,483 649 2,720 2,280,983 816,116 
0 967,440 655 2,720 2,301,536 816,243 
0 968,650 634 2,720 2,224,440 815,991 
0 969,165 599 2,720 2,100,463 815,785 
0 968,406 614 2,720 2,156,007 816,459 
0 966,706 639 2,720 2,246,986 815,588 
0 967,810 626 2,720 2,198,270 816,941 
0 967,674 617 2,720 2,170,491 816,659 
0 969,003 610 2,720 2,141,855 815,908 
0 967,651 605 2,720 2,119,660 816,119 
0 966,927 586 2,720 2,051,618 815,769 
0 967,287 577 2,720 2,022,599 815,447 
0 968,882 610 2,720 2,140,108 815,433 
0 967,958 603 2,720 2,116,654 814,720 
0 967,493 639 2,720 2,244,263 815,726 
0 968,557 613 2,720 2,152,850 816,756 
0 968,853 606 2,720 2,121,545 816,537 
0 967,601 607 2,720 2,133,171 816,601 
0 967,418 623 2,720 2,194,204 814,497 
0 968,882 598 2,720 2,103,552 815,697 
0 968,476 642 2,720 2,250,124 815,947 
0 966,676 639 2,720 2,243,708 815,683 
0 967,748 597 2,720 2,093,737 815,932 
0 967,447 641 2,720 2,251,128 815,163 
0 968,376 609 2,720 2,135,198 816,422 
0 969,271 630 2,720 2,208,450 815,525 
0 968,765 635 2,720 2,226,884 816,845 
0 970,225 659 2,720 2,313,910 816,209 
0 969,714 610 2,720 2,140,301 815,149 
0 968,060 645 2,720 2,263,110 817,246 
0 969,181 618 2,720 2,169,015 816,237 
0 967,750 604 2,720 2,125,509 816,657 
0 968,728 603 2,720 2,116,663 816,198 
0 968,138 617 2,720 2,161,699 816,017 
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79 0 969,077 673 2,720 2,362,863 815,828 
80 0 968,052 541 2,720 1,898,144 815,388 
81 0 969,984 635 2,720 2,227,705 814,544 
82 0 967,115 586 2,720 2,059,820 816,150 
83 0 968,240 626 2,720 2,199,494 815,942 
84 0 968,419 621 2,720 2,178,676 815,743 
85 0 966,553 611 2,720 2,147,854 815,843 
86 0 967,977 636 2,720 2,237,061 815,046 
87 0 968,077 625 2,720 2,194,880 816,778 
88 0 968,530 618 2,720 2,171,056 816,299 
89 0 967,768 616 2,720 2,161,025 816,870 
90 0 968,992 665 2.720 2,332,101 817,174 
91 0 968,974 605 2,720 2,129,122 815,901 
92 0 969,113 569 2,720 1,991,398 816,705 
93 0 968,536 655 2,720 2,296,613 815,526 
94 0 967,947 602 2,720 2,111,946 815,701 
95 0 969,312 610 2,720 2,143,728 816,223 
96 0 967,826 561 2,720 1,968,391 816,898 
97 0 969,540 634 2,720 2,221,693 816,378 
98 0 968,238 630 2,720 2,212,557 816,721 
99 0 969,687 623 2,720 2,186,857 816,800 
100 0 966,898 587 2,720 2,058,513 814,473 
101 0 968,157 597 2,720 2,097,492 814,929 
102 0 968,523 619 2,720 2,169,853 815,223 
103 0 968,855 628 2,720 2,209,622 815,884 

Average 0.00 968,361 616 2,720 2,162,317 815,936 
Variance 0 735,880 525 0 6,563,514,7 

76 
491,281 

std dev 0 858 23 0 81016 701 
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Sample   Time 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

FP 
Work Message Message        Bytes Bytes 

s s 
Sec.   Kilo-Whetstones    Sent Received        Sent        Received 

0 887,515 754 2,720 1,059,819 815,923 
0 887,030 722 2,720 1,013,338 815,687 
0 887,382 727 2,720 1,021,757 815,556 
0 887,248 717 2,720 1,007,414 814,844 
0 887,703 755 2,720 1,059,457 815,824 
0 886,247 781 2,720 1,097,719 816,108 
0 885,869 742 2,720 1,041,685 816,107 
0 884,721 747 2,720 1,048,839 816,271 
0 887,758 756 2,720 1,063,087 816,340 
0 887,602 737 2,720 1,035,221 816,787 
0 887,343 801 2,720 1,123,590 814,884 
0 887,118 750 2,720 1,050,572 816,690 
0 886,285 756 2,720 1,066,135 815,911 
0 884,872 768 2,720 1,075,743 815,771 
0 887,056 763 2,720 1,072,398 816,581 
0 885,443 743 2,720 1,043,474 816,485 
0 887,015 737 2,720 1,033,547 815,436 
0 886,443 703 2,720 986,008 816,206 
0 887,982 761 2,720 1,067,512 816,420 
0 887,737 738 2,720 1,037,326 816,800 
0 886,123 707 2,720 993,759 816,861 
0 886,038 744 2,720 1,045,106 815,940 
0 884,761 744 2,720 1,044,964 816,743 
0 886,031 736 2,720 1,032,146 815,833 
0 886,092 748 2,720 1,051,341 816,906 
0 884,893 742 2,720 1,041,047 816,595 
0 886,373 745 2,720 1,048,631 816,612 
0 887,582 723 2,720 1,011,942 814,505 
0 887,656 759 2,720 1,066,250 814,981 
0 888,279 752 2,720 1,057,758 816,145 
0 886,932 701 2,720 986,533 815,083 
0 886,700 729 2,720 1,024,408 815,587 
0 887,984 754 2,720 1,059,773 816,033 
0 887,166 751 2,720 1,054,583 816,507 
0 885,652 743 2,720 1,045,742 815,938 
0 887,282 716 2,720 1,006,242 815,643 
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37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

0 886,591 695 2,720 976,921 815,504 
0 887,254 767 2,720 1,074,808 817,057 
0 887,196 750 2,720 1,055,656 815,714 
0 887,279 727 2,720 1,021,997 815,465 
0 886,336 752 2,720 1,057,544 814,645 
0 886,302 794 2,720 1,116,462 816,719 
0 888,558 740 2,720 1,038,481 815,435 
0 887,130 746 2,720 1,044,872 815,988 
0 887,402 798 2,720 1,120,747 817,024 
0 887,320 744 2,720 1,044,293 815,326 
0 885,892 743 2,720 1,044,484 816,516 
0 887,819 703 2,720 987,502 815,759 
0 886,387 765 2,720 1,073,634 816,435 
0 886,709 736 2,720 1,033,285 816,307 
0 885,825 772 2,720 1,085,363 816,089 
0 885,621 750 2,720 1,053,825 816,174 
0 886,179 704 2,720 989,778 816,469 
0 886,188 775 2,720 1,088,388 816,307 
0 885,991 763 2,720 1,072,246 816,948 
0 887,927 748 2,720 1,049,616 816,946 
0 886,683 751 2,720 1,055,995 815,960 
0 886,928 690 2,720 967,770 815,605 
0 886,161 725 2,720 1,017,235 815,815 
0 886,205 708 2,720 994,297 817,114 
0 886,386 760 2,720 1,066,417 815,755 
0 887,942 758 2,720 1,066,308 816,654 
0 887,723 753 2,720 1,057,704 816,062 
0 886,459 708 2,720 995,617 815,082 
0 886,052 688 2,720 965,977 814,882 
0 886,432 751 2,720 1,055,365 816,213 
0 885,720 753 2,720 1,057,665 815,570 
0 886,577 713 2,720 1,003,691 815,247 
0 887,444 758 2,720 1,066,274 815,211 
0 885,646 749 2,720 1,053,129 816,573 
0 887,722 732 2,720 1,030,055 814,574 
0 884,567 765 2,720 1,073,133 815,673 
0 886,186 792 2,720 1,113,253 815,589 
0 887,946 732 2,720 1,028,887 815,823 
0 887,783 740 2,720 1,042,012 817,460 
0 884,837 732 2,720 1,028,588 817,205 
0 887,288 722 2,720 1,013,726 816,775 
0 886,361 757 2,720 1,064,229 816,696 
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79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 

0 885,433 726 2,720 1,018,695 816,229 
0 887,299 756 2,720 1,062,495 816,004 
0 885,973 776 2,720 1,090,191 816,632 
0 886,893 784 2,720 1,099,501 815,913 

0 886,270 750 2,720 1,054,275 815,498 

0 886,625 744 2,720 1,045,316 815,015 

0 886,478 751 2,720 1,055,064 817,447 

0 885,947 769 2,720 1,078,632 815,873 

0 887,222 753 2,720 1,055,524 817,212 

0 885,723 747 2,720 1,048,349 816,821 
0 886,735 762 2,720 1,070,271 815,822 
0 886,279 722 2,720 1,014,549 816,275 
0 886,047 753 2,720 1,059,169 816,161 

0 887,315 748 2,720 1,050,048 814,974 
0 886,694 766 2,720 1,074,169 816,701 
0 884,943 732 2,720 1,029,610 815,357 
0 886,433 737 2,720 1,036,373 815,805 
0 888,233 775 2,720 1,088,582 815,766 
0 887,956 717 2,720 1,007,347 815,790 
0 885,646 752 2,720 1,057,711 815,677 
0 885,840 739 2,720 1,036,856 815,266 
0 887,529 728 2,720 1,022,462 816,086 
0 886,783 745 2,720 1,044,806 817,375 
0 886,614 775 2,720 1,088,414 816,923 
0 888,059 755 2,720 1,061,924  815,616 

Average 0.00 886,678 745 2,720 1,046,334 816,050 
Variance 0 807,717 518 0 1,018,850,6 

00 
455,702 

std dev 0 899 23 0 31919 675 
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